
Educational MaterialsAD-A23 77 9 CMU/SEI-89-EM-1

AD-A235 779. ..
III 1111111 Ii ill i -

Software Maintenance Exercises
for a Software Engineering
Project Course

Charles B. Engle, Gary Ford, Tim Korson

February, 1989

X/

2. i. , *
2A<

91-00320IHi I22ll[I, 1111 054

0

S

S

S

Educational Materials
CMI/SEI-89-EM-1

February 1989

Software Maintenance Exercises
for a Software Engineering

Project Course

Charles B. Engle
U.S. Army SEI Resident Affiliate

Gary Ford
SEI Undergraduate Software Engineering Education Project

Tim Korson
Clemson University

D/
I> t".. ,

* d

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

0

9

This technical report was prepared for thp

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731 9

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright Z 1989 by Carnegie Mellon University.

This document is available through the Defense Technical Information Cente. DTIC provides access to and transfer of
scientific and technical information for Doo personnel, DoD contractors and potential contractors, and other U.S Government
agency personnel and their contractors. To obtain a copy, please contact DTIC d:ecliy: Defense Technical enlormatwn
Center, Attn FDRA. Cameron Statior .,exandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering.
please contact NTIS directly. National Technical Information Service, U.S Department of Commerce. Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark hcder

Table of Contents
1. Introduction 1
2. Software Maintenance 2
3. The DASC Software System 4
4. Software Maintenanvc Exercises 6

4.1. Develop Documentation Standards 6
4.2. Develop Configuration Management Plan 7
4.3. Install and Test the DASC 3oftware 8
4.4. Update Documentation after 2orting 9
4.5. Develop Regression Test Plans 10
4.6. Discrepancy Report 1: Unexpected Constraint Exception 10
4.7. Discrepancy Report 2: Apparent Parameter Mode Error 12
4.8. Discrepancy Report 3: File Name Length Errors 13
4.9. Discrepancy Report 4: Empty Input File Error 14
4.10. Discrepancy Report 5: Unreachable Code 14
4.11. Code Reviews 15
4.12. Change Request 1: Improved Flaw and Style Messages 16
4.13. Change Request 2: User Interface, Version 1 16
4.14. Change Request 3: User Interface, Version 2 17
4.15. Change Request 4: User Interface, Version 3 17
4.16. Change Request 5: Add Page Headers to Reports 18
4.17. Change Request 6: Add Line Numbers to Flaw Reports 19
4.18. Change Request 7: Allow User-Specified Style Parameters 19

Annotated Bibliography 21
Appendix 1. Project Team Roles 24
Appendix 2. Distribution Diskette Contents 25

Attachment 1. Discrepancy Reports and Change Requests
Attachment 2. DASC Documentation
Attachment 3. Diskette Order Form

CMU/SEI-89-EM-1

Software Maintenance Exercises for a Software
Engineering Project Course

Abstract
Software maintenance is an important task in the software *ndustry and thus an
important part of the education of a software engineer. It has been neglected in
education, partly because of the difficulty of preparing a software system upon
which maintenance can be performed. This report provides an operational soft-
ware system of 10,000 lines of Ada and several exercises based on that system.
Concepts such as configuration management, regression testing, code reviews,
and stepwise abstraction can be taugat with these exercises.

1. Introduction

Because many if not most computer science majors go on to careers involving software
development, a project-oriented course in software engineering can be very valuable in the
curriculum. One of the goals of the Undergraduate Software Engineering Education Project
at the Software Engineering Institute (SEI) is to provide instructors and students with
guidelines and materials for such a course.

Toward that end, in 1987 the SEI published the technical report Teaching a Project-Intensive
Introduction to Software Engineering [Tomayko87b]. This report identified four different
models for such a course and then presented detailed guidelines for one of them, the "large
project team" model. This model requires 10 to 20 students organized as a software project
team, with different students playing different roles (such as principal architect, project
administrator, configuration manager, quality assurance manager, test and evaluation
engineer, documentation specialist, and maintenance engineer). The instructor plays the role
of project manager. The student roles are defined in Appendix 1.

With such a course structure, not every student writes code; in fact, very few of the students
write code. Instead, the students experience directly or indirectly all the aspects of a soft-
ware development project, and that is what makes such a course a software engineering
course rather than simply an advanced programming or group programming course.

A long-standing difficulty with such a course is that there is almost never enough time to de-
velop a piece of software from scratch and then have the students do some maintenance on it.
Many instructors are unaware of the importance and methods of software maintenance, and
they often do not even include the subject in their course syllabus. Even instructors who do
want to teach maintenance often cannot devote the time to finding or developing a system for
the students to maintain. Since software maintenance is a fact of life in the software indus-

CMU/SEI-89-EM-1 1

try, it is important for students to have experienced it and learned some of the known
techniques.

The intent of this report is to make teaching software maintenance more feasible in a
3oftware engineering project course. This report provides a operational software system,
called the Documented Ada Style Checker (DASC), (described in Section 3); a reasonable set of
documentation for the system; and specific exercises with guidelines for the instructor.
Altogether, the materials could be the basis for a semester-long course. Individual exercises
might be assigned as part of other courses, including a project course based primarily on new
development.

The software system is written in Ada. For instructors and students new to Ada, there is a
great advantage in designing a course around maintenance rather than new development.
Students are able tc work on a much larger system, and thus experience many mort Ada0
constructs, than would be the case if they had to learn the language in parallel with
developing code. In general, analysis is easier than synthesis in engineering.

4
2. Software Maintenance

Thp term z:fiware maintenance is generally used to mean changing a program in order to
correct errors, improve performance, adapt to a changing environment, or provide new
capabilities. Some consider this to be an abuse of the term maintenance and suggest other
terminology, including software evolution and post-deployment software support. However,
the term maintenance is widely used and understood, so we will use it here also.

In simple models of software development, such as the common waterfall model, maintenance
is considered to be an activity separate and different from development. From a software
engineering standpoint, however, it is better to view maintenance as involving the same
activities as those of development (such as requirements analysis and specification, design,
implementation, and testing) but performed with different constraints. The most significant
of those constraints is the existence of a body of code and documentation that must be
incorporated into the new version of the system.

Usually the cost of modifying the existing system is less than that of creating an entirely new 0
system with the desired new functionality. This is the fundamental justification for software
maintenance. However, it is the responsibility of the software project manager to recognize
when this is not the case and that the existing system should be retired and a new system
produced.

Swanson defines three categories of software maintenance (Swanson76]: 0

" Perfective: modifications requested by the user (usually because of changing or new
requirements) or by the programmer (usually because of the discovery of a better
way to implement part of the system).

" Adaptive: modifications necessitated by changes in the environment in which the
program operates (including transporting the program to a different Eromputer 3
system).

* Corrective: modifications to correct previously undiscovered errors in the program.

2 CMU/SEI-89-EM-1

The exercises in this report include some in each of these categories.

There are relatively few techniques or methods specifically for software maintenance as com-
pared to new software development. There are, however, a few software engineering tech-
niques whose usefulness can be demonstrated especially well through maintenance efforts.
Four that we recommend to instructors and students are:

" Software Configuration Management

Regression Testing

" Code Reviews

" Stepwise Abstraction

Software configuration management encompasses the disciplines and technique- nf initiating,
evaluating, and controlling change to software products during and after the development
process. The students should be required to de .elop and adhere to a software configuration
management plan as part of the course. The software system described in this report consists
of approximately 10,000 lines of code (in 63 separately compilable program units) and nine
documents. When the students are working on the changes to both program and
documentation, especially when different students are working on different changes, careful
configuration management is essential to the project. Therefore one of the first recommended
exercises is the development of the configuration management plan. Additional information
on configuration management may be found in [Tomayko86] and [Tomayko87a].

Regression testing is defined as "selective retesting to detect faults introduced during modifi-
cation of a system or system component, to verify that modifications have not caused
unintended adverse effects, or to verify that a modified system or system component still
meets its specified requirements" [IEEE83]. Some of the exercises require major changes to
the software system and therefore call for substantial retesting, perhaps involving the entire
test suite. Other exercises require rather minor changes, and a single, simple retest may be
sufficient. One of the first recommended exercises is the development of regression test
plans. Additional information on regression testing may be found in [Collofello88b].

Code reviews offer an opportunity for software developers to discover errors or inefficiencies
in their code earlier in the development process. Their use is an application of a fundamental
principle of engineering: it is almost always less costly to find and correct an error early in
the process rather than late. They are becoming increasingly common in industry, so
students should learn at least one form of review in a software engineering course. Reviews
can be conducted in a number of different ways; a good introduction for the instructor may be
found in [Collofello88a].

Stepwise abstraction ;s a technique pioneered by IBM Federal Systems Division (now
Systems Integration Division). It is used to recover the high level design of a system in the
absence of design documentation. The design can then be used to plan program changes.
Britcher and Craig describe the process as follows [Britcher86]:

"From the source code, the designer abstracted the module design and recorded it
using PDL [Process Design Language]. Choosing the level of abstraction based on the
module, the designer determined the change reouired. Often this was an iterative
process; the designer abstracted a detailed design from the code, then generated

CMU/SEI-89-EM-1 3

another less detailed (yet still precise) abstrction from that design. The iteration
continued until the designer was comfortable with the level of abstraction."

Some of the exercises in this report can take advantage of this technique (for example, exer-
cises 4.16, 4.17, and 4.18). For the DASC system, which is reasonably well structured and
makes good use of Ada packages, this abstraction is quite straightforward. However, because
it is a powerful and useful technique, we strongly recommend using it. The instructor may
want to lead a classroom discussion to introduce the process.

3. The DASC Software System

The Documented Ada Style Checker (DASC) software system examines syntactically correct
Ada programs and reports on their adherence to predefined style conventions. Examples of
the style conventions examined are:

" Case of characters in reserved words and object identifiers

" Consistency of indentation to show program control structures S

* Use of blank lines to set off program blocks

• Subprograms too short or too long

* Control structures or packages nested too deeply

* Use or lack of use of Ada-specific features 0

The style checker produces two kinds of reports, called a flaw report and a style report. The
former identifies specific statements in the program that violate style conventions, and the
latter is a quantitative summary of the program's style.

The ;v;tem was criginally developed on a Data General computer system and later ported to S
a DEC VAX VMS system. It was then placed in the Ada Software Repository. Rrd hemce n
the public domain. (For information on the repository, see [Conn87].)

In the spring of 1988, Prof. Linda Rising of Indiana University-Purdue University at Fort
Wayne (IPFW) selected the system as the basis of a software engineering project course. Her
students were given the task of porting the system to the university's VAX and providing a 0
reasonable set of documentation for it (hence the name documented Ada style checker).

The student documentation consists of the following documents:

1 Requirements Document
2. Preliminary Design
3. Detailed Design
4. Documentation Standards and Guidelines

5. Coding Standards
6. Quality Assurance Plan
7. Test Plan
8. Configuration M.nagement Plan
9. User Manual

4 CMU/SEI-89-EM-1

The requirements and design documents (items 1-3), having been produced from the source
code, clearly are not as complete as one would expect in a real software development project.
However, they do provide a starting point for maintenance exercises, including maintenance
of the documents themselves.

The documentation and coding standards and the three plan documents (items 4-8) were used
by Prof. Rising and her students to guide their project. These documents reflect both
development and maintenance activities. Some of the first exercises in this report involve
updating these documents to reflect new maintenance activities.

The user manual (item 9) describes the use of the system in its IPFW implementation. Much
of this document is specific to VAX VMS systems and some specific to IPFW. Porting the
software to another computer system will require extensive revision of this (cXCument. In
particular, porting the system will require redesign and reimplementation of the user
interface, the description of which constitutes a major part of this document. Some of the
exercises in this report are based on the development of a new user interface (see exercises
4.13, 4.14, and 4.15).

In the summer of 1988, Prof. Rising provided the software and student documentation to the
SEI for further development and release as teaching support materials. Prof. Tim Korson of
Clemson University, who was a visiting scientist at the SEI, succeeded in porting the system
to a VAX VMS system and to a Zenith Z248/MS-DOS system running Alsys Ada. He also
developed the first maintenance exercises. Subsequently, Maj. Chuck Engle, a U.S. Army
resident affiliate at the SEI, ported the system to a VAX Ultrix system running Verdix Ada,
and he developed some additional exercises. SEI staff developed other exercises, and edited
and formatted the student documentation.

It is interesting to note that each of the three Ada compilers on the three different computer
systems reportea a diffe, u;t set of errors and warnings when the program was compiled.
Although they were not reported by all compilers, each error has been documented as a dis-
crepancy report and the correction of the error appears in this report as an exercise (see
exercises 4.6 through 4.10).

The SEI has prepared distribution diskettes containing the DASC system source code, the
student documentation, tools, and the test suite. These may be ordered in two formats,
Macintosh 3.5" 800K byte diskettes and IBM PC 5.25" 1.2M byte diskettes. The documents
are available in three formats: as Microsoft Word documents and MacWrite documents for
the Macintosh, and as text-only documents for any system. A description of the contents of
the distribution diskettes appears in Appendix 2, and a diskette order form appears at the
end of this report.

We assume that many users of this software will want to upload the system from a PC to a
VAX VMS computer system. To help in this process, the distribution diskettes also include
two command files that can be used to translate between the relatively long file names of the
VMS version and the eight character names required under MS-DOS. In addition, the
diskettes include a file giving the required compilation order of all the program units.

We do not present this artifact as a model of good coding style, design, or documentation. In
fact, if the style checker is run on itself, it reports many problems. There are some fairly
obvious design improvements that could be made. The documentation is reasonable although
not complete, and no formal analysis, design, or documentation technique was used.

CMU/SEI-89-EM-1 5

In sumrr,,,v, one might say that this artifact seems to be a fairly representative example of
existiWo software systems. This is not necessarily bad, because a valid educational objective 0
might be to expose students to "the real world."

4. Software Maintenance Exercises

The exercises described in this section are presented in roughly the order in which they might
be assigned to the students. Most of the exercises, however, are relatively independent, and
;nstructors should feel free to select those that are most appropriate for their particular
courses.

We recommend that the first five exercises, which deal with project management, be included
in all courses. In most cases, these exercises can be assigned to different students or groups
of students, those playing the roles of documentation specialist, configuration manager, test
and evaluation engineer, and verification and validation engineer (see Appendix 1 for
descriptions of these roles).

Exercises 4.6 through 4.10 are presented as discrepancy reports and exercises 4.12 through
4.18 as change requests. These reports and requests, formatted as one page forms, appear in
Attachment 1 and also on the distribution diskettes. We recommend that instructors tailor
these to their circumstances, print copies, and submit them to the student Change Control
Board for action. The project leader and the configuration manager can assign responsibility
for making the appropriate changes in the code and the documentation.

Exercise 4.11 can be used to introduce the concept of a code review. The exercise identifies a
module in the code for which a careful inspection should uncover opportunities for improving
the code. The result will be an additional change request. Once the students are familiar
with code review, they should be asked to conduct them for their own code.

4.1. Develop Documentation Standards

Exercise

Select word processing or document processing software to be used to develop and maintain
project documentation. Transfer the documents from the distribution diskette to the appro-
priate computer system. Modify the docurnent Documentation Standards and Guidelines to
reflect local requirements and capabilities.

Information for Instructors

The objective of this exercise is Lu introduce the students to the system documentation and to
the idea of maintaining documentation along with the code. Too often in the academic en- 0
vironment, documentation is an afterthought.

6 CMU/SEI-89-EM-1

It is likely that the instructor will select the appropriate documentation soft-ware. If possible,
allow the students to use the same computer system for code development and documenta-

tion. This can give more of the feel of an integrated programming environment in which it is
easy to manipulate all kinds of software work products in a coordinated way.

In any case, the documentation specialist role should be assigned to a student with good
knowledge of the word processing software being used. The instructor should ensure that the
documentation standards developed by the student are reasonable. That is, adherence to the
standard- should bc easily within the capabilities of all students. An in-class formal review

of the document can be used to help identify problems with the standards.

The documentation standards supplied with the DASC system reflect the fact that IPFW stu-
dents used Macintosh systems with Ready,Set,Go! and Excelerator software. The documents
themselves were prepared for distribution on a Macintosh with Microsoft Word and MacWrite
software. If such a system is available, very little change in the documentation standards
should be required.

Otherwise, we recommend that the text-only versions of the documents be the basis for
project documents. Many more changes in the documentation standards will then be re-
quired.

Only one or two students are likely to be involved in this exercise. Therefore it can be done in
parallel with other exercises.

4.2. Develop Configuration Management Plan

Exercise

Using the existing DASC Configuration Management Plan as a basis, develop an appropriate
configuration management plan.

Information for Instructors

The objective of this exercise is to introduce the students to the basic concepts of configura-
tion management, including the configuration mancgement plan document and the change
control board. It is important that the document be approved and the change control board
be in place before the code maintenance exercises be attempted. This will not only help make
the code installation (see the next exercise) more well-defined, but it also helps instill in the
students the idea of plan first, execute later.

The existing plan will need only minor modifications when used in a course in which different
students play different project roles. Some modifications that will certainly be needed are the
following:

(Change the date mentioned in section 2.3.4.

II1

CMU/SEI-89-EM- 1 7
I

" Change the names of the project directories as needed for your particular computer
system. References to these directories appear in sections 2.3.2, 3.1.3, 3.1.4, 3.2.5, 0
3.3, and appendices 1 and 2.

" Provide an appropriate list of test and support tools that will be used by the stu-
dents. This list ib referenced in section 2.3.3.

* Choose an appropriate file name convention, as described in section 3.1.5.2.

* Choose an appropriate file protection convention, as described in section 3.2.6.

4.3. Install and Test the DASC Software

Exercise

Transfer the source code from the distribution diskette to an appropriate computer system.
Structure the code directory or directories as specified in the configuration management plan.
Compile each program unit, using the compilation order defined on the distribution diskette.
Record all compiler error and diagnostic messages.

Run the program on the entire test suite. Record any discrepancies for consideration by the
Change Control Board.

Information for Instructors 0

The objectives of this exercise are to make the software system operational in preparation for
the later exercises and to give the students the experience of trying to install a system that
they have not themselves written. The absence of a detailed installation guide will require
the students to improvise. The instructor may wish to have the students write such a guide
for their particular computer system after the installation.

The DASC source code on the distribution diskette is known to have some errors (see exer-
cises 4.6 through 4.10). Depending on the Ada compiler used, students may discover some of
these known errors (but probably not all of them), and they may also discover some additional
errors.

in many cases, the students may see error messages related to wrong compilation order,
typographical errors in commands, or just misunderstanding of the Ada system they are
using. These errors should be corrected immediately so that the installation can continue.

Error and diagnostic messages from the compiler should be recorded as discrepancy reports.
The reports should be submitted to the student Change Control Board for action rather than '
being corrected immediately. Errors uncovered by running the test suite should also be
recorded as discrepancy reports.

8 CMU/SEI-89-EM-1

4.4. Update Documentation after Porting

Exercise

Revise all documentation as required to reflect the system after installation on the new com-
puter system and to bring all documents into compliance with the documentation standards.

Information for Instructors

The objective of this exercise is to continue to instill in the students the idea that the docu-
mentation is an integral part of the system, and that any maintenance effort must include
documentation maintenance.

Instructors should take care to ensure that documentation changes are handled like code
changes, meaning that they are considered by the Change Control Board and the configura-
tion manager. Note that the discrepancy report form and change request form have places
for recording the documentation affected by changes.

Some documentation revisions were detailed in exercise 4.2. Other places where revisions
will be necessary are:

" Section 5.1 of the Test Plan mentions the names of the test files and the directory in
which they reside. These should be changed as required by the computer system
being used by the students.

* Modify the user manual to reflect the user interface, assuming that the students are
not using the VAX VMS interface supplied on the distribution diskette.

This exercise can also be used to correct some known problems with the original documenta-
tion distributed with this report. These problems include:

* Section 3 of the Test Plan shows the relationships between a requirement and the
test case for that requirement. The table mentions only four test cases, when in fact
there are seven test cases supplied on the distribution diskette.

* The Documentation Standards and Guidelines describe a standard for
representation of acronyms in documents. This standard is not followed in the
documents on the distribution diskette. Either the documents or the standard
should be changed.

* The Preliminary Design Document and the Detailed Design Document do not
contain revision history sections. These should be added.

The documentation specialist will have primary responsibility for this exercise. Other
students may begin some of the later exercises in parallel with the documentation revisions.

CMU/SEI-89-EM-1 9

S

4.5. Develop Regression Test Plans
0

Exercise

Section 5,2 of the Test Plan document describes how regression testing is to be performed.
Modify this section as necessary. 9

Information for Instructors

The objective of this exercise is to introduce the concept of regression testing. It is likely that
the students will not have encountered this concept in earlier programming courses. There-
fore it is important for the instructor to spend some time discussing the reasons for doing
regression testing and the importance of maintaining the test plan so that regression testing
may be done properly when needed.

The student designated to be the project test engineer should have continuing responsibility
to keep section 5.2 of the test plan up to date. As new system requirements are approved by •
the Change Control Board, the test engineer should also revise section 3 of the test plan. The
instructor, as project manager, should be responsible for ensuring that this student keeps the
test plan current. An in-class review of the parts of the test plan related to regression testing
can be helpful.

4.6. Discrepancy Report 1: Unexpected Constraint
Exception

Exercise

During execution, an exception is raised in the procedure ENTERING BLOCKSTRUCTURE.
Identify and correct the error that causes this exception to be raised.

Information for Instructors

The objective of this exercise is to give the students experience correcting an error that raises
an exception in Ada. Instructors may want to point out that the error causing this exception
might go undetected in most earlier programming languages.

This is an actual bug that was discovered when porting the system to the Alsys compiler on a
PC/AT-class machine. The problem did not occur in the VAX VMS/DEC Ada environment. If
the Alsys compiler is available, the strategy actually used to identify the error, described
below, may be useful for students. In other cases, it will be necessary for the instructor to
identify the exception and the statement that causes it to be raised.

Since an exception is raised in a when others statement, the first step in the problem is to
determine which exception is being raised. This is easily accomplished by adding when state-

10 CMU/SEI-89-EM-1

ments for all possible exceptions. Alternatively, some compilers provide a way to determine
the current exception name. After doing this, the exception will be identified as a constraint
error.

The students are likely to make some common errors when following this strategy, especially
if they are new to Ada. The instructor might expect the following errors:

• If students test for when 10_EXCEPTION. anything, they should be sure to add a
with 10_EXCEPTIONS; statement when compiling the package.

* If students block off a portion of the program and add:

EXCEPTION
when constraint-error => Put-line(" Error on line xxx ");

consider propagating the exception with:

Raise

To identify which statement is causing the constraint error, the procedure can be divided into
blocks, each of which has its own exception handler. The block containing the error can then
be subdivided into smaller blocks until the statement causing the error is identified. That
statement will be found to be:

CURRENT STATUS. PROCEDURE NEST LEVEL =
CURRENTSTATUS .PROCEDURE NESTLEVEL +1

This approach to the exercise requires a knowledge of the classical divide-and-conquer
debugging strategy, and how to use the Alsys compiler, but does not require an in-depth
knowledge of Ada. A brief introduction to the syntax and semantics of exception handling in
Ada along with access to a reference manual should be sufficient for an experienced
programmer.

A constraint error indicates that the variable is being given a value that is not valid for its
type. Because the new value is the former value plus one, the former value must be incorrect.
An examination of all references to this variable will show that it and two other related vari-
ables are never initialized. Each of these variables (PACKAGE NEST LEVEL, CONTROL_-
NESTLEVEL, and PROCEDURENESTLEVEL) is used as a nesting level counter, and each
should start at 0.

Once the students have determined how these variables are used, they must determine how
and where to initialize them. All three are fields in the variable CURRENTSTATUS, which is
declared in procedure STYLE_CHCCKER. An examination of that procedure shows two ways to
accomplish the initialization.

The first way is to write assignment statements in the body of the procedure:

CURRENT STATUS. PACKAGE NEST LEVEL = 0;
CURRENTSTATUS. CONTROLNESTLEVEL = 0;
CURRENT-STATUS.PROCEDURZNESTLEVEL := 0;

The second way is to give default initial values to these fields in the declaration of the record
type itself:

CMU/SEI-89-EM-1 11

type STATUSRECORD is record

PACKAGE NEST LEVEL TOKENIZER.LINE INDEX RANGE := 0;
CONTROLNESTLEVEL TOKENIZER.LINE_INDEX RANGE:= 0;
PROCEDURENESTLEVEL : TOKENIZER.LINEINDEX_RANGE:= 0;

end record;

4.7. Discrepancy Report 2: Apparent Parameter Mode
Error

Exercise

The compiler reports that out mode parameters in two procedures are not given values.
Determine whether this error is a result of the parameters' modes being incorrectly specified,
whether those parameters are not needed at all, or whether the parameters should have been
given values in the bodies of the procedures. In this latter case, supply the code to give the
parameters appropriate values.

The errors are reported for procedures CREATEDICTIONARY and TOKEN ISFOUND, both of
which are defined in package DICTIONARYMANAGER.

S
Information for Instructors

The objective of this exercise is to give the students experience in a situation where the origi-
nal developers of the code wrote some obviously unusual code but did not document their
reasons for doing so. In this case, the students should deduce that the developers were
leaving a "hook" for additional functionality that was never added.

The code for the package in question is:

package body DICTIONARYMANAGER is

procedure CREATEDICTIONARY(DICTIONARY KIND : in DICTIONARY TYPE;
DICTIONARYIN : out DICTIONARY PTR;
FILENAME : in STRING) is

begin
return;

end CREATEDICTIONARY;

procedure TOKENISFOUND(IN DICTIONARY : out DICTIONARYPTR;
WORD in TOKENDEFINITION.TOKEN TYPE;
FOUND out BOOLEAN) is

begin
FOUND := TRUE;

end TOKENISFOUND;

end DICTIONARY MANAGER;

12 CMU/SEI-89-EM-1

It is apparent that the procedure bodies arc just stubs. References to these two procedures
appear in procedures STYLECHECKER and CHECKOBJECTNAMES_SIZE. Upon closer
examination of the package and these references, it can be determined that the dictionary
manager package is for purposes of automatic spelling correction, a feature not currently
present in the style checker. One of the references is seen in this code segment (from the
latter procedure):

DICTIONARYMANAGER.TOKENISFOUND(STYLEDICTIONARY,
SPELL CHECK_WORD,
FOUND);

if not FOUND then
-- Not handled now...
null;

end if;

There are two straightforward solutions to this exercise. The first is to give values to the out
mode parameters (which can be anything, since they are never used). This preserves the op-
tion of adding the spelling correction capability later. Appropriate comments in the code
would be useful for subsequent maintainers.

The second solution is to remove all the related code. This is the more interesting solution
because it forces the students to examine more code to be sure that they have found all the
related code, and it also demands more thorough regression testing to determine that the
existing functionality of the system has not been compromised.

4.8. Discrepancy Report 3: File Name Length Errors

Exercise

During the process of transporting the DASC system to the MS-DOS/Alsys Ada environment,
all system files with names exceeding 8 characters were given modified names. Upon
execution, the system could not find some files because they had different names. The system
should be modified to work with the new 8-character names.

Information for Instructors

The objective of this exercise is to correct known errors in the system and to give the students
an introduction to the Ada facilities for relating external and internal file names. This
exercise is essential for students using MS-DOS; it probably can be ignored by other students.

The instructor may simply ask the students to find all occurrences of file names in the code
and reduce them to 8 characters if necessary. The following are known occurrences and may
be given to the students if desired.

In the specification of package FILE-HANDLING:

HELP FILE NAME : constant STRING "STYLE HELP.INI";
STYLE DICTIONARY NAME : constant STRING

'S-TYLE DICTIONARY. INI";

CMU/SEI-89-EM-1 13

In the body of package FILEHANDLING:

COMAND LINE FILE NAME : constant STRING := "COMANDLI.TXT";

4.9. Discrepancy Report 4: Empty Input File Error

0

Exercise

If the file input file (named COMMANDLI. TXT in the original version of the system) is empty or
any line in that file is the name of a nonexistent file, several exceptions arp r sed and the
DASC system fails to perform properly. Modify the system to provide better handling of
these conditions.

Information for Instructors

The objective of this exercise is to let the students see the result of incompleteness in the
specification. Of course, since the original requirements specification is not available, we
cannot be sure that this is a specification error rather than a design and implementation
error. However, such boundary condition errors are commonly overlooked in specifications,
so it is likely to be such an error.

It is desirable that the system make a graceful exit if the list of files to process is empty, and
that it simply report files that cannot be found and proceed to the next. The students should
revise the requirements document to cover these cases. Then the code should be modified to
reflect the new requirements. Regression testing should follow, and the test suite should be
augmented to include the case of an empty COMMANDLI. TXT file.

4.10. Discrepancy Report 5: Unreachable Code

Exercise

The compiler reports unreachable code in function IS STATEMENT. Determine the cause of
this error and correct it.

Information for Instructors

The unreachable code is that shown below between the two when clauses:

case TOKENIZER.TYPE_OFTOKENIS (EXAMINEDTOKEN) is

when WHILE TOKEN => return true;
LOOKAPHEAD := PREVIOUS NON TRIVIALTOKEN(EXAMINEDTOKEN);
if TOKENIZER.TYPE OFT0KEN IS

(LOOKAHEAD) 7= TOKENIZER.ENDTOKEN then

14 CMU/SEI-89-EM-1

return Lrue;
else

return false;
end if;

when ACCEPTTOKEN => return true;

end case;

The instructor will need to identify the unreachable code unless the compiler does so. This
discrepancy was noted using the VAX Ultrix/Verdix Ada environment, but not with the other
environments in which the system was tested.

The unreachable code can simply be removed. The reason for its presence is unknown.

4.11. Code Reviews

Exercise

In conjunction with exercise 4.10, conduct a code inspection of procedure is statement.

Information for Instructors

The objective of this exercise is to introduce students to the fundamentals of code reviews.
Such reviews (walkthroughs and inspections) are among the most important tools available to
software engineers for improving software quality. The instructor should require code re-
views of all major changes to the code. (For more information on all kinds of software tech-
nical reviews see [Collofello88a] and [Cross88].)

To introduce the process, the students are asked to conduct a code review of an existing code
module. Procedure is_statement has been chosen for two reasons. First, it is the subject of

a discrepancy report (see exercise 4.10) and a code review is a good teehnique for determining
how to remove this discrepancy.

Second, the procedure exhibits several occurrences of a common coding error and the review
can be used to generate an additional change request to fix them. The error is a misuse of the
boolean data type, as illustrated in this code segment from the procedure:

if TOKENIZER.TYPEOFTOKENIS
(LOOKAHEAD) /= TOKENIZER.KNDTOKEN then
return true;

else
return false;

end if;

The improved code is:

return TOKENIZER.TYPEOFTOKENIS(LOOKAHEAD) = TOKENIZER.ENDTOKEN;

CMU/SEI-89-EM- 1 15

4.12. Change Request 1: Improved Flaw and Style
Messages

Exercise
Spelling errors have been noticed in the flaw and style reports generated by DASC; these are

to be corrected. The errors are:

1. "Inconsistant Indentation" should be "Inconsistent Indentation"

2. "PRAGMA'S" and "PRAGMA's" should be "PRAGMAS"

3. "Reserve word ..." should be "Reserved word ..."

4. "upper case" should be "uppercase"; "lower case" should be "lowercase"

Information for Instructors

This is a very simple perfective maintenance exercise. Its objecti,, is to let the students gain
some familiarity with the packages that generate the reports. This familiarity will be useful
for subsequent exercises.

Because the specific errors to be corrected are given, the students should be able to use the
search capability of a text editor to find the occurrences of these errors. The only difficulty is
identifying the packages and procedures to be searched. They are package REPORT -

GENERATOR and procedure RESERVEWORDENCOUNTERED.

4.13. Change Request 2: User Interface, Version 1

Exercise

Currently the DASC system expects the list of file names to be processed to be in the file
named COIO4ANDLI. TXT. Add a new user interface that, upon starting the system, prompts
the user for a file name, reads in that file name, and then reads the names of files to be
processed from that file.

Information for Instructors

The objective of this exercise is to introduce the students to writing entirely new code in
response to a request for new functionality. This is the first of three exercises devoted to in-
creased functionality of the user interface.

Note that the user interface supplied on the distribution diskette for the VAX VMS/DEC Ada
environment is written in DEC Command Language (DCL), and is therefore not portable to
any other environment. This and the next two exercises essentially provide the functionality
of that user intprface, but coded in Ada.

16 CMU/SEI-89-EM-1

When doing these three exercises, the instructor may wish to assign them sequentially to
introduce the students to the iterative enhancement technique for system building. Although
originally intended for new development, this technique is equally applicable to maintenance
when a significant amount of new code is being produced.

This exercise will allow students new to Ada to gain some familiarity with simple string input
and output, and with making a correspondence between internal and external file names.

These exercises should include the writing of more detailed specifications and the
modification of documentation as appropriate. Of particular interest is the modification of
the test plan. The new user interface can only be tested interactively, so the test plan will
need to contain a description of how this is to be done. The user manual will also require a
substantial modification (see also exercise 4.4).

4.14. Change Request 3: User Interface, Version 2

Exercise

Modify the user interface of the previous exercise so that the user can build the file of file
names interactively. The systems should repeatedly prompt the user for another file name,
read the name, and append it to the file of file names. The user should be given a way to
indicate that no more names are to be read, at which time the DASC system processes those
files whose names have been read.

Information for Instructors

This exercise continues the development described for the previous exercise. The instructor
should require the students to prepare a more detailed specification of the changes to be
made and require appropriate changes to documentation, including the user manual. The
section of the test plan describing interactive testing (see previous exercise) may need to be
revised.

4.15. Change Request 4: User Interface, Version 3

Exercise

Modify the user interface to allow immediate screen display of flaw and style reports. After
processing all the files whose names are in the input file (named COMMANDLI .TXT in the
original version of the system), the system should ask the user if display of the flaw report is
desired. If so, it is displayed on the screen one page at a time (like the UNIX or MS-DOS
more command). After each page, the user can request another page or exit. A similar
display of the style report should then be allowed. This is repeated for each file processed.

CMU/SEI-89-EM-1 17

Information for Instructors

The objective of this exercise is to give the students an opportunity to add a significant new
capability to the system. It will give the students a substantial amount of experience with
interactive input and output in Ada.

As with the previous two exercises, the instructor should first require a detailed specification
of the proposed change. This should include the wording of messages from the system and
the responses that the user may give. The user manual describes this kind of interface, and
it may be used as a starting point for the new specifications.

Documentation will again need to be modified. If the user manual was stripped UI ali refer-
erices to the original VAX VMS user interface as a result of exercise 4.4, the students may
now discover that they are putting almost all of the removed material back in. Therefore it is 9
important for the instructor to structure the exercises so as not to frustrate the students un-
necessarily. One approach is to do the three user interface modification exercises sequen-
tially but with the understanding that the user manual will be modified only once, and that
will be to reflect the final user interface. The actual modification of the user manual can
precede the code changes, so that the manual can serve as a specification for the design of the
new code.

4.16. Change Request 5: Add Page Headers to Reports
S

Exercise

Revise the format of flaw reports and style reports to include a page heading on each page.
The heading should include the name of the Ada program file that generated the report, the
date, and the report page number.

Information for Instructors

The objective of this exercise is to give the students experience reading and understanding an
existing code module, and then making a relatively small change.

The package REPORTGENERATOR contains the procedures that produce the reports. A rec-
ommended approach to a solution is to add a procedure that formats and prints a page
heading, count the lines printed, and then invoke the page heading procedure at the appro-
priate points. Students might anticipate that different printer or display devices would have
different numbers of lines per page, and so it is good practice to make the page size a named
constant that can be easily changed.

18 CMU/SEI-89-EM-I

4.17. Change Request 6: Add Line Numbers to Flaw
Reports

Exercise

Revise the format of the flaw report so that the source file line number is reported for each
line found to have a style flaw.

Information for Instructors

The objective of this exercise is also to give students experience in understanding a code
module in order to make a simple change. The change needed is smaller than that of the
previous exercise, but requires more program analysis.

The difficult task is understanding the organization of the program and the function of each
of its components so that students can determine where to make the required modifications.
As the style checker processes the code, it builds a linked list that it can then traverse in
either direction. Because of this, source lines with flaws are sometimes reported out of order.
Recognizing this behavior of the program is essential to finding a solution for this exercise.

An analysis of the source code reveals that the program already keeps track of the current
line number in the variable CURRENT_TOKEN, TOKEN_POSITION. LINE. Since this variable
is visible in the procedure LINECONTAININGTOKEN, and this procedure is always used to
produce the source line reported in the flaw report, one simple solution is to modify this
procedure so that it concatenates the line number onto the beginning of the erroneous source
line.

The instructor might expect the students to make the following errors on this exercise:

* It is easy to end up with a type mismatch when dealing with integers, strings, and
dynamic strings all in the same statement.

* The code contains a number of variables that keep track of different but related
counts, such as statement count, number of blank lines, and line within the file.
Students could print out the wrong variable.

4.18. Change Request 7: Allow User-Specified Style
Parameters

Exercise

Modify the system so that the quantifiable style parameters are read from a file rather than
being directly coded into the system. This will allow different organizations to customize the
system more easily.

CMU/SEI-89-EM-1 19

Information for Instructors

The objective of this exercise is make a significant change to the system that will increase its
usefulness. It requires that the students first understand the various style parameters and
then decide which can meaningfully be customized. Then they must identify where those pa-
rameters appear in the code, change constants to variables, and provide a way for values of
those variables to be read in.

The package StyleParameters, and in particular, procedure Set Style_..Parameters,
contains the code that defines the style parameters to be examined. The instructor should
point out that the system is reasonably well designed in this respect; the students might be
asked to imagine performing this exercise on a system in which these values are neither col-
lected in a single package nor declared as named constants.

Regression testing after this modification should be planned carefully. A first round of tests
should be performed with the style parameters in the input file being the same as those cur-
rentlv declared in the code. This will allow the new output to be compared to the known out-
put from the test suite. Then the various parameters should be changed, the tests performed
again, and the output examined. Many of the results will be different, and the students must
determine manually if they are correct.

It will certainly be the case that for some values of some parameters, no program in the cur-
rent test suite is an adequate test. New test program should be devised and placed in the test
suite.

As with the previous changes, modifications of the documentation will be required. Students
should not forget that the user manual will require revision as part of this exercise.

2

20 CMUISEI-89-EM- 1

Annotated Bibliography

iBritcher86] Britcher, Robert N., and James J. Craig. "Using Modern Design Practices
to Upgrade Aging Software Systems." IEEE Software 3, 3 (May 1986), pp.
16-24.

This paper describes some software maintenance experiences within
IBM.

[Collofe!lo88a] Collofello, James S. The Software Technical Review Process. Curriculum
Module SEI-CM-3-1.5, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa., 1988.

Capsule Description: This module consists of a comprehensive
examination of the technical review process in the software devel-
opment and maintenance life cycle. Formal review methodologies are
analyzed in detail from the perspective of the review participants,
project management and software quality assurance. Sample review
agendas are also presented for common types of reviews. The objec-
tive of the module is to provide the student with the information
necessary to plan and execute highly efficient and cost effective
technical reviews.

[Collofello88b] Collofello, James S. Introduction to Software Verification and Validation.
Curriculum Module SEI-CM-13-1.1, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pa., 1988.

Capsule Description: Software verification and validation
techniques are introduced and their applicability discussed.
Approaches to integrating these techniques into comprehensive
verification and validation plans are also addressed. This
curriculum module provides an overview needed to understand in-
depth curriculum modules in the verification and validation area.

[Conn87] Conn, Richard. The Ada Software Repository and the Defense Data
Network. New York: New York Zoetrope, 1987.

This book describes the history and zc.t.cnts of the Ada Scftware
Repository (the original source of the DASC system). It also
describes several ways for interested persons to access the repository
and extract software from it.

[Cross88] Cross, John A., editor. Support Materials for The Software Technical
Review Process. Support Materials SEI-SM-3-1.0, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, Pa., 1988.

This package includes a number of examples and structured exer-
cises for students.

CMU/SEI-89-EM-1 21

[IEEE83] IEEE. Standard Glossary of Software Engineering Terminology.
ANSI/IEEE Std 829-1983, Institute of Electrical and Electronics Engi-
neers, 1983.

This book should be available for reference by all software engineer-
ing educators and students. Although some I 3rsons might disagree
with some of the definitions, on the whole it is an excellent resource
for those wishing to promote a standard vocabulary of software
engineering.

[Parikh83] Parikh, Girish, and Nicholas Zvegintzov. Tutorial on Software
Maintenance. IEEE Computer Society Press, 1983.

This book is a collection of over thirty papers on software mainte-
nance, mostly from the late 1970s and early 1980s. Much of the
material is now dated, but on the whole it is some interesting back-
ground reading for the instructor.

[Swanson76] Swanson, E. B. "The Dimensions of Maintenance." Proc. 2nd
International Conference on Soltwc-e Engineering, IEEE Computer Soci-
ety, 1976, pp. 492-497.

This is one of the very early papers on software maintenance. It is
still often cited for some of its definitions.

[Tomayko86] Tomayko, James E. Support Materials for Software Configuration
Management. Support Materials SEI-SM-4-1.0, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, Pa., 1986.

This package of support materials includes a number of examples of
industrial discrepancy reports and change forms, an example of a
configuration management plan, several kinds of classroom materi-
als, and example of using a configuration management tool, and
additional background material for instructors.

[Tomayko87a] Tomayko, James E. Software Configuration Management. Curriculum
Module SEI-CM-4-1.3, Software Engineering Tnstitute, Carnegie Mellon
University, Pittsburgh, Pa., 1987.

Capsule Description: Software configuration management encom-
passes the disciplines and techniques of initiating, evaluating, and
controlling change to software products during and after the devel-
opment process. It emphasizes the importance of configuration con-
trol in managing software production.

[Tomayko87b] Tomayko, James E. Teaching a Project-Intensive Introduction to Software
Engineering. Technical Report CMU/SEI-87-TR-20, Software Engineer-
ing Institute, Carnegie Mellon University, Pittsburgh, Pa., 1987.

Abstract: This report is meant as a guide to the teacher of the intro-
ductory course in software engineering. It contains a case study of a
course based on a large project. Additional materials used in

22 CMU/SEI-89-EM-1

teaching the course and samples of student-produced documentation
are also available. Other models of course organization are also
discussed.

CMrU/SEI-89-EM-1 23

Appendix 1. Project Team Roles

Principal Architect: Responsible for the creation of the software product. Primary responsi-
bilities include authoring the requirements document and specification document, advising on
overall design, and supervising implementation and testing.

Project Administrator: Responsible for resource allocation and tracking. Primary
responsibilities are cost analysis and control, computer and human resource acquisition and
supervision. Collects data and issues weekly cost/manpower consumption reports and the
final report.

Configuration Manager: Responsible for change control. Primary responsibilities include
writing the configuration management plan, tracking change requests and discrepancy re-
ports, calling and conducting change control board meetings, archiving, and preparing
product releases.

Quality Assurance Manager: Responsible for the overall quality of the released product. Pri-
mary responsibilities include preparing the quality assurance plan, calling and conducting
reviews and code inspections, evaluating documents and tests.

Test and Evaluation Engineer: Responsible for testing and evaluating individual modules
and subsystems and for preparing the appropriate test plans.

Designer: Primary responsibility is developing aspects of the design as specified by the archi-
tect. During the pre-design stage, this person could assist in a literature search to explore
similar products or problems.

Implementor: Primary responsibility is to implement the individual modules of the design
and serve as the technical specialist for a particular language and operating system. During
the requirements specification and design stages, the implementors could develop tools and
experiment with new language constructs expected to be needed in the product.

Documentation Specialist: Responsible for the appearance and clarity of all documentation
and for the creation of user manuals.

Verification and Validation Engineer: Responsible for creating and executing test plans to
verify and validate the software as it develops, including tracing requirements throiugh
specification, design, coding, and testing. Also responsible for code inspections. Acts as a
member of an independent group.

Maintenance Engineer: Primary responsibility is creating a guide to the maintenance of the
delivered product.

Note: The above definitions are reprinted from [Tomayko87b].

24 CMU/SEI-89-EM-1

Appendix 2. Distribution Diskette Contents

Macintosh Version

The information on the source code diskette has been taken from the Ada Software Reposi-
tory and is in the public domain. As a courtesy to the original developers of the system, it is
requested that all copies of the software retain the prolog either as a separate file or as a pre-
fix to the main program.

The information on the documentation diskette is copyright 1989 by Carnegie Mellon Univer-
sity. Permission to make copies or derivative works of this information is granted, without
fee, provided that the copies and derivative works are not made or distributed for direct
commercial advantage, and that all copies and derivative works cite this document by name
and document number and give notice that the copying is by permission of Carnegie Mellon
University.

Source Code Diskette

The diskette name is DASC Source, and it contains a copyright notice file and three folders
named Source, Test Suite, and Tools (Figure 1). A typical folder display for each is shown
below.

-E-D DASC Source ME_-

4 items 495K in disk 278K available

Copyright Notice Source Test Suite Tools

Figure 1. Contents of source code diskette

The source code folder (Figure 2) includes 63 Ada compilation units and two input files
(commandl.txt and styxhelpini) that are needed when the system is executed.

CMU/SEI-89-EM-1 25

Source ____i
Namne size Kir

0beginofl.ada 1 4K

Dbuildtok.ada 2K
Dcheckendada 2K
Dcheckfor.ada 2K
Dcheckobjada 5K

Dchecksta.ada 5K

D checkthe.ada 11 K
D checkuni.ada 5K

D commnandl.ada 3K

fl commandl~txt 1 K

D commnentt.ada 3K
D currentt.ada 1K

D dynada 9K

Figure 2. Source folder (partial listing)

The test suite folder (Figure 3) contains seven test files and two output files (test 1 .FLW and
test] .STY) produced when the DASO system is run on file test I ada

___E_____ Test Suite cnm

11 itemns 495K in disk 278K available

testlI.ada testl1.FLW test I.STY

testi1 a~ada testi b ada test2.ada test3a.ada

test4.ada test5.ada test6.ada tost7.ada

Figure 3. Test Suite folder

26 CMU/SEI-89-EM-1

The tools folder (Figure 4) includes the following files:

install.doc Describes how to install the version of DASC prepared by the
IPFW students. It makes reference to diskettes used by the
students; those references do not apply to the distribution
diskettes that accompany this report.

dasc.corn A DEC Command Language (DCL) file that is the user interface
to the DASC system on a VAX VMS computer system.

compile.doc A listing of the order in which the 63 source files must be
compiled.

dwnvms.com A DEC Command Language (DCL) file that changes the long
file names used on a VMS system to the short (8 character) file
names for an MS-DOS system.

upvms corn A DEC Command Language (DCL) file that changes the short (8
characte-) file names for an MS-DOS system to the long file
names used on a VMS system.

dwn-unix.com A UNIX C shell script that changes the long file names used on
a UNIX system to the short (8 character) file names for an MS-
DOS system.

up-unix.corn A UNIX C shell script that changes the short (8 character) file
names for an MS-DOS system to the long file names used on a
UNIX system.

- ____________Tools 2I1
7 items 495K in disk 278K available

install.doc dasc.com cornpile.doc

dwn-vms.com upvms.com dwn-unix.com up.unix.com

Figure 4. Tools folder

Documentation Diskette

The diskette name is DASC Doc, and it contains a copyright notice file and a folder named
DASC Documentation. That folder contains three other folders, each of which contains a
complete set of DASC documents in a different format (Microsoft Word, MacWrite, and text
only). A typical folder display is shown in Figure 5.

CMU/SEI-89-EM-1 27

DASC Documentation
3 items 736K in disk 37K available

MacWrite Format Text Only-

__________--_____Word Format __-F -
12 items 736K in disk 37K available

Req Doc Prelim Design Detailed Design Doc Stds Coding Stds

Q A Plan Test Plan CM Plan Change Request Discr Report

II
User Manual DRs and CRs

Figure 5. DASC Documentation and Word Format folders

The folder DRs and CRs contains the Microsoft Word versions of the discrepancy reports and
change requests that appear as Attachment 1 of this document. These appear only in
Microsoft Word format.

PC/AT Version

The diskette name is DASC, and it contains both the source code and the documentation. At
the top level it contains a copyright notice file COPRIGHT. TXT and four directories, named
SOURCE, TSTSUITE, TOOLS, and DOCUMENT. Listings of the directories are shown below.

The information in directories SOURCE and TSTSUITE has been taken from the Ada Software
Repository and is in the public domain. As a courtesy to the original developers of the sys-
tem, it is requested that all copies of the software retain the prolog either as a separate file or
as a prefix to the main program. The information in directory TOOLS is also in the public
domain, either having come from the Ada Software Repository or having been placed in the
public domain by Carnegie Mellon University.

28 CMU/SEI-89-EM-1

The information in directory DOCUMENT is copyright 1989 by Carnegie Mellon University.
Permission to make copies or derivative works of this information is granted, without fee,
provided that the copies and derivative works are not made or distributed for direct
commercial advantage, and that all copies and derivative works cite this document by name
and document number and give notice that the copying is by permission of Carnegie Mellon
University.

Top Level Directory Listing

Volume in drive A is DASC
Directory of A:\

SOURCE <DIR> 2-09-89 2 :18p
TSTSUITE <DIR> 2-09-89 2 :18p
TOOLS <DIR> 2-09-89 2 :18p
DOCUMENT <DIR> 2-09-89 2 :18p
COPRIGHT TXT 1014 2-09-89 l:01p

5 File(s) 533504 bytes free

Source Directory Listing

Volume in drive A is DASC
Directory of A:'\SOL.CE

.. BEGINOFL ADA BUILDTOK ADA CHECKEND ADA
CHECKFOR ADA CHECKOBJ ADA CHECKSTA ADA CHECKTHE ADA CHECKUNI ADA
COMMANDL ADA COMMENTT ADA CURRENTT ADA DYN ADA ENTERB ADA
ENTERS ADA EXITBL ADA FILESPEC ADA FIXIT ADA GETNEXTT ADA
INSERT ADA ISARESER ADA ISSTATEM ADA LINECONT ADA LITERAL ADA
MANAGER ADA NEWLINET ADA NEXTCHAR ADA NEXTIDEN ADA NONTRIVI ADA
OBJECTNA ADA REPGENBO ADA REPGENSP ADA RESERVDW ADA RESERVEW ADA
SPARAMBO ADA SPARAMSP ADA SRCHBCKO ADA SRCHBCKW ADA SRCHFORE ADA
SRCHFORW ADA STACKPAC ADA STYLECHE ADA TOKENDEF ADA TOKENZBO ADA
TOKENZSP ADA TREEROOT ADA TYPEDECL ADA HELPBODY ADA HELPDISA ADA
HELPEXIT ADA HELPFB ADA HELPFIND ADA HELPFS ADA HELPGET ADA
HELPIB ADA HELPINIT ADA HELPIS ADA HELPME ADA HELPMENU ADA
HELPRESE ADA HELPROMP ADA HELPSPEC ADA HELPTEXT ADA FILEBODY ADA
STYXHELP INI COMMANDL TXT

67 File(s) 533504 bytes free

Test Suite Directory Listing

Volume in drive A is DASC
Directory of A:\TSTSUITE

TEST1 ADA TESTIA ADA TESTIB ADA
TEST2 ADA TESTIA ADA TEST4 ADA TESTS ADA TEST6 ADA
TEST7 ADA TESI' STY TESTI FLW

13 File(s) 533504 bytes free

CMU/SEI-89-EM-1 29

Tools Directory Listing

Volume in drive A is DASC
Directory of A:\TOOLS

DASC COM UPUNIX COM UPVMS COM

DWNUNIX COM OWN VMS COM COMPILE DOC INSTALL DOC -
9 File(s) 533504 bytes free

The tools directory includes the following files:

dasc. com A DEC Command Language (DCL) file that is the user interface
to the DASC system on a VAX VMS computer system. 0

up_unix .corn A UNIX C shell script that changes the short (8 character) file
names for an MS-DOS system to the long file names used on a
UNIX system.

up_vrs . corn A DEC Command Language (DCL) file that changes the short (8
character) file names for an MS-DOS system to the long file
names used on a VMS system.

dwn unix. corn A UNIX C shell script that changes the long file names used on 0
a UNIX system to the short (8 character) file names for an MS-
DOS system.

dwn vms. com A DEC Command Language (DCL) file that changes the long
file names used on a VMS system to the short (8 character) file
names for an MS-DOS system.

compile .doc A listing of the order in which the 63 source files must be 0
compiled.

install .doc Describes how to install the version of DASC prepared by the
IPFW students. It makes reference to diskettes used by the
students; those references do not apply to the distribution
diskettes that accompany this report. 0

Document Directory Listing

Volume in drive A is DASC

Directory of A:\DOCUMENT

CHNGREQ TXT CMPLAN TXT CODESTDS TXT 0

DETDES TXT DISCRREP TXT DOCSTDS TXT PREDES TXT QAPLAN TXT

REQDOC TXT TESTPLAN TXT USERMAN TXT
13 File(s) 533504 bytes free

30 CMU/SEI-89-EM-1

DASC DISCREPANCY REPORT Report No.: 1
Release No.:

Originator: Position:
E-Mail Address: Date:

Problem Description/Requirement Not Met: During execution, an exception is raised

in the procedure ENTERING-BLOCKSTRUCTURE.

Correction Description:

41,
Resource Estimation (Hrs) Documentation Affected:

Modification
Testing Source File(s) Affected:
Other
TOTAL

CCB Decision
Approved As Is Waived - Approved For Analysis

Reasons Waived:

CCB Signatures: Date:

0 Request Closed Date:
Configuration Manager/Document Specialist Signature:

DASC DISCREPANCY REPORT Report No.: 2
Release No..

Originator: Position:

E-Mail Address: Date:

Problem Description/Requirement Not Met: The compiler reports that out mode

parameters in two procedures are not given values. The errors are reported for

procedures CRE-ATE.DICTIONARY and TOKEN IS_-OuND, both of which are

defined in package DICTIONARY-XANAGER.

0

Correction Description:

Resource Estimation (Hrs) Documentation Affected:

Modification
Testing Source File(s) Affected:
Other _

TOTAL

CCB Decision
Approved As Is__ Waived Approved For Analysis __

Reasons Waived: 0

CCB Signatures: Date: 0

Request Closed Date:

Configuration Manager/Document Specialist Signature:

DASC DISCREPANCY REPORT Report No.: 3
Release No.:

Originator: Position:

E-Mail Address: Date:

Problem Description/Requirement Not Met: During the process of transporting the

DASC system to the MS-DOS/Alsys Ada environment, all system files with names

exceeding 8 characters were given modified names. Upon execution, the system

could not find some files, because they had different names.

Correction Description:

Resource Estimation (Hrs) Documentation Affected:

Modification
Testing Source File(s) Affected:
Other
TOTAL

CCB Decision
Approved As Is Waived Approved For Analysis

Reasons Waived:

CCB Signatures: Date:

Request Closed Date:
Configuration Manager/Document Specialist Signature:

DASC DISCREPANCY REPORT Report No.: 4
Release No.:

Originator: Position:

E-Mail Address: Date:

Problem Description/Requirement Not Met: If the file input file (named

COMMANDLI. TXT in the original version of the system) is empty or any line in that

file is the name of a nonexistent file, several exceptions are raised and the DASC

system fails to perform properly.

Correction Description:

Resource Estimation (Hrs) Documentation Affected:

Modification
Testing Source File(s) Affected:
Other
TOTAL

CCB Decision
Approved As Is Waived Approved For Analysis _

Reasons Waived:

CCB Signatures: Date:

RpoqJpst Closed Date:
Configuration Manager/Document Specialist Signature:

DASC DISCREPANCY REPORT Report No.: 5
Release No.:

Originator: Position:

E-Mail Address: Date:

Problem Description/Requirement Not Met: The compiler reports unreachable code

in function IS-STATEMENT.

Correction Description:

Resource Estimation (Hrs) Documentation Affected:

Modification
Testing Source File(s) Affected:
OtherTOTAL

CCB Decision
Approved As Is Waived Approved For Analysis

Reasons Waived:

0B Signatures: Date:

Request Closed Date:

Configuration Manager/Document Specialist Signature:

DASC CHANGE REQUEST Change Request No.: 1
Release No.:

Originator: Position:
E-Mail Address: Date:

Change Type

X New Feature Cost Reduction - Other (describe)

Correction Description: Spelling errors have been noticed in the flaw and style

reports generated by DASC: these are to be corrected. The errors are:

1. "Inconsistant Indentation" should be "Inconsistent Indentation"

2. "PRAGMA'S" and "PRAGMA's" should be "PRAGMAS"

3. "Reserve word ..." should be "Reserved word ..."

4. "upper case" should be "uppercase"' "lower case" should be "lowercase"

Resource Estimation (Hrs) Documentation Affected:

Modification
Testing Source File(s) Affected:
Other
TOTAL _

CCB Decision
Approved As Is Waived _ Approved With Modification

Reasons Waived/Description of Modification:

CCB Signatures: Date:

Request Closed Date:
Configuration Manager/Document Specialist Signature:

DASC CHANGE REQUEST Change Request No.: 2
Release No.:

Originator: Position:
E-Mail Address: Date:

Change Type

X New Feature Cost Reduction __ Other (describe)

Correction Description: Currently the DASC system expects the list of file names to

be processed to be in the file named COMMANDLI. TXT. Add a new user interface that

0 upon starting the system, prompts the user for a file name, reads in that file name,

and then reads the names of files to be processed from that file.

Resource Estimation (Hrs) Documentation Affected:

Modification
Testing Source File(s) Affected:
Other
TOTAL

CCB Decision
Approved As Is Waived _ Approved With Modification

Reasons Waived/Description of Modification:

CCB Signatures: Date:

0 Request Closed Date:
Configuration Manager/Document Specialist Signature:

DASC CHANGE REQUEST Change Request No.: 3
Release No.:

Originator: Position:
E-Mail Address: Date:

Change Type
X New Feature _ Cost Reduction Other (describe)

Correction Description: Modify the user interface of the previous exercise so that the

user can build the file of file names interactively. The systems should repeatedly

prompt the user for another file name, read the name, and append it to the file of

file names. The user should be given a way to indicate that no more names are to

be read, at which time the DASC system processes those files whose names have

been read.

Resource Estimation (Hrs) Documentation Affected:

Modification
Testing Source File(s) Affected:
Other
TOTAL

CCB Decision
Approved As Is _ Waived _ Approved With Modification

Reasons Waived/Description of Modification:

CCB Signatures: Date:

Request Closed Date:
Configuration Manager/Document Specialist Signature:

DASC CHANGE REQUEST Change Request No.: 4
Release No.:

Originator: Position:
E-Mail Address: Date:

Change Type

X New Feature Cost Reduction _ Other (describe)

Correction Description: Modify the user interface to allow immediate screen display

of flaw and style reports. After processing all the files whose names are in

COMAN'DLI. TXT, the system should ask the user if display of the flaw report is

desired. If so, it is displayed on the screen one page at a time (like the UNIX or

MS-DOS more command). After each page, the user can request another page or

exit. A similar display of the style report should then be allowed. This is

repeated for each file processed.

Resource Estimation (Hrs) Documentation Affected:

Modification I
Testing Source File(s) Affected:
Other
TOTAL

CCB Decision
Approved As Is Waived - Approved With Modification

Reasons Waived/Description of Modification:

CCB Signatures: Date:

Request Closed Date:
Configuration Manager/Document Specialist Signature:

DASC CHANGE REQUEST Change Request No.: 5
Release No.:

Originator: Position:
E-Mail Address: Date:

Change Type
X New Feature Cost Reduction - Other (describe)

Correction Description: Revise the format of flaw reports and style reports to include

a page heading on each page. The heading should include the name of the Ada

program file that generated the report, the date, and the report page number.

Resource Estimation (Hrs) Documentation Affected:

Modification
Testing Source File(s) Affected:
Other _

TOTAL

CCB Decision
Approved As Is Waived __ Approved With Modification

Reasons Waived/Description of Modification:

CCB Signatures: Date:

Request Closed Date:
Configuration Manager/Document Specialist Signature:

DASC CHANGE REQUEST Change Request No.: 6
Release No.:

Originator: Position:
E-Mail Address: Date:

Change Type
X New Feature _ Cost Reduction _ Other (describe)

Correction Description: Revise the format of the flaw report so that the source file

line number is reported for each line found to have a style flaw.

Resource Estimation (Hrs) Documentation Affected:

Modification
Testing Source File(s) Affected:
OtherTOTAL

CCB Decision
Approved As Is _ Waived - Approved With Modification

b Reasons Waived/Description of Modification:

CCB Signatures: Date:

Request Closed Date:

Configuration Manager/Document Specialist Signature:

b

DASC CHANGE REQUEST Change Request No.: 7
Release No.:

E-Mail Address: Date:

Change Type
X New Feature Cost Reduction _ Other (describe)

Correction Description: Modify the system so that the quantifiable style parameters

are read from a file rather than being directly coded into the system. This will

allow different organizations to customize the system more easily. 0

Resource Estimation (Hrs) Documentation Affected:

Modification
Testing Source File(s) Affected:
Other
TOTAL

CCB Decision
Approved As Is Waived _ Approved With Modification

Reasons Waived/Description of Modification:

CCB Signatures: Date:

Request Closed Date: 0

Configuration Manager/Document Specialist Signature:

0

DOCUMENTED ADA STYLE CHECKER
(DASC) PROJECT

REQUIREMENTS DOCUMENT

Req Doc Written By
04/04/88 Peggy Jones
Version 1.0

REQUIREMENTS DOCUMENT (V. 1.0)

Table of Contents

1. Introduction .. 1
1.1. Problem Statem ent ... 1
1.2. Product Description ... 1

2. Product Com ponents .. q .. 1
2.1. Software .. 1

2.1.1. DASC Source Files .. 1
2.1.2. DASC Sam ple Files .. 1

2.2. Docum entation ... 1

3. Functional Requirem ents .. 2
3.1. U ser Interface ... 2

3.1.1. Allow U ser Easy Access ... 2
3.1.2. Process Sam ple Input Files .. 2
3.1.3. Process U ser Input Files ... 2
3.1.4. Process M ultiple Input Files .. 2
3.1.5. Access On-Line H elp Facility ... 2
3.1.6. Keep U ser Appropriately Inform ed .. 2
3.1.7. Allow U ser Easy Exit ... 3

3.2. Style Definition ... 3
3.2.1. Range Param eters ... 3

3.2.1.1. Subprogram Size ... 3
3.2.1.2. N am e Length .. 3
3.2.1.3. Code Section Size ... 3
3.2.1.4. Subprogram Param eters ... 3
.. , .5. Loop Exits .. 3
3.2.1.6. Line Length .. 3
3.2.1.7. Abbreviation Length .. 3

3.2.2. Percentage Param eters ... 3
3.2.2.1. Literal U sage .. 4
3.2.2.2. U niversal Type U sage .. 4

3.2.3. Average Param eters ... 4
3.2.3.1. Com m ent Size .. 4
3.2.3.2. N am e Length .. 4
3.2.3.3. U nderscores ... 4

3.2.4. Optional Param eters ... 4
3.2.4.1. U se of U nderscores .. 4
3.2.4.2. Consistent Indentation in Declarations 4
3.2.4.3. Consistent Indentation in Comments ... 4
3.2.4.4. Use of Blank Lines in Control Structures 4
3.2.4.5. U se of Loop N am es ... 4
3.2.4.6. U se of Data Structures .. 4
3.2.4.7. U se of Attributes ... 4
3.2.4.8. Depth of N esting ... 4
3.2.4.9. Use of Representation Specifications ... 4
3.2.4.10. U se of Address Clauses ... 4

3.2.5. Other Considerations ... 5
3.2.5.1. Pragm as .. 5
3.2.5.2. Host Dependent Packages ... 5
3.2.5.3. Character Set ... 5
3.2.5.4. Object Case .. 5

REQUIREMENTS DOCUMENT (V. 1.0)

3.2.5.5. Reserved W ord Case .. 5
3.2.5.6. Reserved W ord U sage .. 5

3.3. Style Reporting .. 5
J..- . 1i1a. k.u vwaiikn .. 5

3.3.1.1. Invalid Object Case .. 5
3.3.1.2. Invalid Keyw ord Case .. 5
3.3.1.3. N am e Segm ent Size .. 5
3.3.1.4. Average N qm e Size .. 5

3.3.2. Physical Layout .. 5
3.3.2.1. Occurrences of Multiple SLatements Per Line 5
3.3.2.2. Inconsistent Indentation ... 6
3.3.2.3. M issing Blank Lines .. 6
3.3.2.4. Loops Without Names 6

3.3.3. Inform ation H iding ... 6
3.3.3.1. Percent of Literal U sage ... 6
3.3.3.2. Percent of U niversal Type U sage ... 6
3.3.3.3. Attribute U se .. 6
3.3.3.4. Ada-Specific Features U sed, .. 6

3.3.4. M odularity ... 6
3.3.4.1. N um ber of Subprogram Pa .n ters ... 6
3.3.4.2. Subprogram Size ... 6
3.3.4.3. N um ber of Loop Exits .. 6
3.3.4.4. N esting Levels ... 6

3.3.5. Com m ent U sage .. 6
3.3.5.1. N um ber of Com m ents .. 6
3.3.5.2. Average Com m ent Size .. 6

3.3.6. Transportability .. 6
3.3.6.1. Line Length Violations .. 6
3.3.6.2. Address Clauses U sed .. 6
3.3.6.3. Pragm as U sed .. 6
3.3.6.4. Representation Specifications Used ... 6

3.3.7. K eyword U sage ... 6
3.3.7.1. Keywords U sed ... 7
3.3.7.2. Keyw ords Allow ed .. 7

3.3.8. Error Listing ... 7

4. Physical Requirem ents .. 7
4.1. U ser Interface .. 7
4.2. Style Checking .. 7

5. Constraints ... 7

A. Revision H istory .. 7

In

REQUIREMENTS DOCUMENT (V. 1.0)

1. Introduction

0 This Requirements Document defines the complete specifications of the technical requirements for the
Documented Ada Style Checker (DASC) kroject. This document is structured according to the DASC
Documentation Standards and Guidrlines.

1.1. Problem Statement

40 Objectively speaking, what is program style and how can it be measured? Program style has been
defined as a "followed convention with respect to punctuation, capitalization, and typographical
arrangement and display". There are tools to measure program efficiency, tools to measure program
complexity, and tools to measure program cost. There is a need for a tool to measure program style.

1.2. Product Description

* The DASC Project is a software tool that will quantitatively measure program style for Ada language
programs. DASC will accept a syntactically correct input program, check that program against an
established style convention, and output quantitative and objective evaluations of that input program.

2. Product Components

The DASC Project will include all ii,ipleientation code files and all external documentation used in the
design, production, testing, and maintenance of thz project.

2.1. Software

The software components will include all source code files necessary to operate the DASC system as well
as sample Ada input files.

2.1.1. DASC Source Files

The source code shall include all files that allow the user to perform the following functions:

1. Execute the system interface
2. Execute the system processing
3. Execute the system help facility

2.1.2. DASC Sample Files

DASC will provide at least ten sample input files. These files can be used as valid input and will include
style errors and deficiencies that are detected by the Style Checker.

2.2. Documentation

The DASC Project shall be supported with appropriate external documentation. These documents shall
be version numbered and updated as changes occur.

1. Documentation Standards - will describe the basic standards for text documents
and Guidelines supporting the DASC Project

2. Requirements Document - will specify capabilities that the system must provide in order
to solve the problem

3. Configuration Management - will define all policies related to the management of
Plan change for the project

*A

REQUIREMENTS DOCUMENT (V. 1.0)

4. Quality Assurance Plan . will describe the standards and procedures to be implemented
to ensure satisfactory confidence in the project

5. Cnd n Stqndards . will prcsenL guidelines which provide self-documentation,
uniformity, and clarity to all project source code

6. Preliminary Design - will provide the overall preliminary Document architectural
plan or structure of the project source code

7. Detailed Design Document - will provide the overall detailed architectural plan or
structure of the project source code

8. Test Plan - will describe the objectives of testing, particular tools and
techniques to be used, actual test cases, and expected results

9. User Manual - will detail all necessary information -- with examples --

needed by the user to effectively operate the system

3. Functional Requirements

Functional requirements for the DASC tool include requirements for a user interface, as well as for style
definition and style reporting.

3.1. User Interface

DASC processing should be easily accomplished by even inexperienced users. Specifically, the user
interface should perform the following functions.

3.1.1. .A1ow User Easy Access

DASC should allow the user easy access from a system prompt.

3.1.2. Process Sample Input Files

DASC should allow the user to process selected test input files.

3.1.3. Process User Input Files

DASC should allow the user to process his own input files.

3.1.4. Process Multiple Input Files

DASC should allow the user to process multiple input files without reinvoking the Style Checker.

3.1.5. Access On-Line Help Facility

DASC should allow the user to access an on-line help facility for assistance.

3.1.6. Keep User Appropriately Informed

DASC should provide messages to inform the user as to processing status.

3.1.7. Allow User Easy Exit

DASC should allow the user to easily exit the Style Checker and return to the system prompt.

3.2. Style Definition

2

REQUIREMENTS DOCUMENT (V. 1.0)

The DASC tool should be easily modifiable to check Ada code against the specific style used by an
installation. A method to define the desired style should be provided. This method should provide easy
access to specific narameters including ranges, percentages, averages, and optional checks. The values
given these parameters will formally define the style convention.

3.2.1. Range Parameters

DASC should provide a method for setting minimum and or maximum values for the following
parameters. Violations of these ranges may be flagged as style flaws.

3.2.1.1. Subprogram Size

Maximum and minimum size parameters (number of statements) for subprograms should be provided.
Subprograms smaller than the minimum may be too small to measure in terms of style.

3.2.1.2. Name Length

A minimum length parameter should be provided for names. Names smaller than a certain number of
characters may not effectively identify an object.

3.2.1.3. Code Section Size

A minimum number of lines parameter should be provided for code sections, such as control structures.
-Any code section below this minimum cannot be reasonably style checked.

3.2.1.4. Subprogram Parameters

Minimum and maximum parameters should be provided for the number of allowable subprogram
parameters.

3.2.1.5. Loop Exits

A maximum parameter should be provided for the number of allowable loop exits.

3.2.1.6. Line Length

A maximum parameter should be provided for the length of a source code line.

3.2.1.7. Abbreviation Length

A minimum parameter should be provided for abbreviation lengths.

3.2.2. Percentage Parameters

DASC should provide a means of defining percentage measurements for the following parameters.
Values falling outside defined percentages may be flagged as style flaws.

3.2.2.1. Literal Usage

A maximum allowable percentage of literal usage should be provided. This parameter would limit the
use of literals in program bcdies.

3.2.2.2. Universal Type Usage

A maximum allowable percentage should be provided. This parameter would discourage exclusive use of
universal types versus user-defined types.

3.2.3. Average Parameters

3

SA

REQUIREMENTS DOCUMENT (V. 1.0)

DASC should provide a method for defining average measurements for the fnllzwing parameters. Values
aiing outside tne averages may be flagged as style flaws.

3.2.3.1. Comment Size

A minimum average for comment size should be provided.

3.2.3.2. Name Length

A minimum average for name length should be provided.

3.2.3.3. Underscores

A minimum average fnr use of underscores should be provided.

3.2.4. Optional Parameters

DASC should allow the following parameters to be set on or off; on if the particular item is to be
reported, off otherwise.

3.2.4.1. Use of Underscores

3.2.4.2. Consistent Indentation in Declarations

3.2.4.3. Consistent Indentation in Comments

3.2.4.4. Use of Blank Lines in Control Structures

3.2.4.5. Use of Loop Names

3.2.4.6. Use of Data Structures

3.2.4.7. Use of Attributes

3.2.4.8. Depth of Nesting

3.2.4.9. Use of Representation Specifications

3.2.4.10. Use of Address Clauses

3.2.5. Other Considerations

DASC should provide for the definition of the following style considerations.

3.2.5.1. Pragms

DASC should allow the definition of which pragmas to flag. This shall include the choices: all pragmas;
just system dependent pragmas; no pragmas.

3.2.5.2. Host Dependent Packages

DASC should allow the definition of packages that may be dependent on the host system. Use of these
packages may be flagged.

3.2.5.3. Character Set

DASC should allow definition of the allowable character set for source code. Violations may be flagged.

4

REQUIREMENTS DOCUMENT (V. 1.0)

3.2.5.4. Object Case

DASC should allow definitin of the case to be used for object names.

3.2.5.5. Reserved Word Case

DASC should allow the definition of the case to be used for Ada reserved words.

3.2.5.6. Reserved Word Usage

DASC should allow the definition of limits on the use of Ada reserved words.

3.3. Style Reporting

Specified style problems should be summarized in report form. In addition, individual style errors should
be noted. Style reports will be organized within the following categories.

3.3.1. Naming Conventions

The following statistics concerning names should be summarized.

3.3.1.1. Invalid Object Case

3.3.1.2. Invalid Keyword Case

3.3.1.3. Name Segment Size

3.3.1.4. Average Name Size

3.3.2. Physical Layout

The following statistics concerning physical layout should be summarized.

3.3.2.1. Occurrences of Multiple Statements Per Line

3.3.2.2. Inconsistent Indentation

3.3.2.3. Missing Blank Lines

3.3.2.4. Loops Without Names

3.3.3. Information Hiding

The following statistics concerning information hiding should be summarized.

3.3.3.1. Percent of Literal Usage

3.3-3.2. Percent of Universal Type Usage

3.3.3.3. Attribute Use

3.3.3.4. Ada-Speciflc Features Used

3.3.4. Modularity

The following statistics concerning program modularity should be summarized.

5

REQUIREMENTS DOCUMENT (V. 1.0) S

3.3.4.1. Number of Subprogram Parameters

3.3.4.2. Subprogram Size

3.3.4.3. Number of Loop Exits

3.3.4.4. Nesting Levels

3.3.5. Comment Usage

The following statistics concerning comment usage should be summarized.

3.3.5.1. Number of Comments

3.3.5.2. Average Comment Size

3.3.6. Transportability

The following statistics concerning program transportability should be summarized.

3.3.6.1. Line Length Violations

3.3.6.2. Address Clauses Used

3.3.6.3. Pragmas Used

3.3.6.4. Representation Specifications Used

3.3.7. Keyword Usage

The following statistics concerning the use of Ada keywords should be summarized. S

3.3.7.1. Keywords Used

3.3.7.2. Keywords Allowed

3.3.8. Error Listing

Individual errors should be noted by listing the style flaw found, and listing the source code line in which
the flaw appeared. DASC should provide a parameter to limit the number of duplicate errors listed.

4. Physical Requirements

Physical requirements of the DASC tool include requirements for a user interface and for style checking. •

4.1. User Interface

The DASC user interface should be an interactive shell written in the host computer's command
language. This shell should be menu driven with screen prompts and should echo all keyboard input.

0
4.2. Style Checking

DASC should input any syntactically correct Ada compilation unit. These units will be checked against
the user-defined style convention. Output will consist of a statistical summary of style considerations
and individual style flaws. This output should be available for screen viewing and/or printing.

5. Constraints •

6

REQUIREMENTS DOCUMENT (V. 1.0)

The Documented Ada Style Checker (DASC) Project will be developed on Digital Equipment Corporation
(DEC) using the Virtual Address eXtended (VAX) architecture, Virtual Memory System (VMS) operating
system. The compiler used for the project will be the DEC Ada compiler, version 1.4. Status prompts to
the screen will be provided when any processing function shall exceed five seconds.

A. Revision History

Version 0.1 02/09/88 Peggy Jones

Revision 0.2 03/04/88 Peggy Jones
Restructured the document according to the DASC Documentation Standards
and Guidelines. The availability of the help facility was included in the
document.

Revision 0.3 03/24/88 Peggy Jones
Categorized the style definition (section 3.2), added functional requirements
for the user interface (section 3.1), and included a Revision History section
(section A).

Baselined 04/04/88 Bill Davis

7

DOCUMENTED ADA STYLE CHECKER

(DASC) PROJECT

PRELIMINARY DESIGN DOCUMENT

Prelim Design Written By
05/02/88 Robin Mitchell
Version 1.0

nf

PRELIMINARY DESIGN DOCUMENT (V. 1.0)

Table of Contents

1. Introduction .. 1.
1.1. Inheritance Charts... 1
1.2. Descriptions... 1

2. Reports.. 1

PRELIMINARY DESIGN DOCUMENT (V. 1.0)

1. Introduction

This is the preliminary design document for the Documented Ada Style Checker (DASC) project. This
document provides the overall architectural design for the DASC project. Tools used to produce this
document are the following:

" Excelerator
" Compilation Order tool

Contained in this document are the following:

" Inheritance charts for each package of the DASC project
" A brief description of each package along with what it exports

[Editor's note: The inheritance charts and package descriptions are not available for distribution with
this document.]

1.1. Inheritance Charts

The inheritance charts consist of labeled square blocks with an arrow to indicate inheritance. The label
for each package consists of a number, in the format n.m followed by the package name. In this label n is
the lowest vertical level on which the package appears, and m is a sequential numbering of the packages
on that level.

1.2. Descriptions

The descriptions of the DASC system packages were generated as Excelerator reports. These
descriptions have the following information:

Label This is the same label as described in section 1.1 Inheritance charts.
Explodes This is not applicable to the report and should be blank.
Location This is not applicable to the report and should contain N/A.
Type This is used to indicate the type of object being described and should contain the

keyword PACKAGE.
Value This is not applicable to the report and should contain N/A.
Description This is used to describe the package and should contain a brief description

along with a list of the entities the package exports.

All of the information after the description is not applicable and may be ignored.

2. Reports

The inheritance charts and descriptions follow.

[Editor's note: The inheritance charts and package descriptions are not available for distribution with
this document.]

DOCUMENTED ADA STYLE CHECKER
(DASC) PROJECT

DETAILED DESIGN DOCUMENT

Detailed Design Written By
05/02/88 Robin Mitchell
Version 1.0

DETAILED DESIGN DOCUMENT (V. 1.0)

Table of Contents

1. Introduction .. 1
1.1. Invoked-By List..1.
1.2. Structure Charts .. 1.

2. Reports.. 1

DETAILED DESIGN DOCUMENT (V. 1.0)

1. Introduction

This is the detailed design document for the Documented Ada Style Checker (DASC) project. This
document provides the internal design for the DASC project. Tools used to produce this document are
the following:

" Excelerator

" Compilation Order tool

Contained in this document are the following:

" An invoked-by list for each procedure in the DASC project
" Structure charts for each procedure in the DASC project

[Editor's note: The structure charts are not available for distribution with this document.]

1.1. Invoked-By List

The invoked-by list contains all the the procedures and functions ordered by number. Each number is of
the format n.m.o, where n.m is the package number in which the procedure or function is contained, and
o is a sequential numbering of the procedures and functions contained in that package. For an
explanation of the package numbering system see the Preliminary Design Document. Under each
procedure or function is a list of all the procedures and functions that invoke it. For example, if 1.0.1
check the style is the procedure being considered, it would appear as follows:

1.0.1 check the style
1.0.0 style checker

In this example 1.0.1 check the style is invoked only by 1.0.0 style checker.

1.2. Structure Charts

The structure charts depict a single level of decomposition for each procedure and function. A single level
of decomposition was decided on due to size constraints of Excelerator and the printer used. Each
procedure and function is labeled by a number and the procedure or function name.

2. Reports

The invoked-by list and structure charts follow:

1.0.0 style checker
this is the main procedure and is invoked at run-time

1.0.1 check the style
1.0.0 style checker

1.0.2 check object names size
1.0.1 check the style

1.0.3 check for attribute
1.0.1 check the style

1.0.4 check universal
1.0.1 check the style

1.0.5 get next token and update count
1.0.1 check the style

DETAILED DESIGN DOCUMENT (V. 1.0)

1.0.6 is statement
1.0.1 check the style
1.0.7 beginning of line indentation
1.0.8 check statements per line
1.0.9 reserved word encountered
1.0.27 entering block structure

1.0.7 beginning of line indentation
1.0.1 check the style

1.0.8 check statements per line
1.0.1 check the style

1.0.9 reserved word encountered
1.0.1 check the style

1.0.10 new line token encountered
1.0.1 check the style

1.0.11 object name encountered
1.0.1 check the style

1.0.12 literal encountered
1.0.1 check the style

1.0.13 comment token encountcred
1.0.1 check the style

1.0.14 check for end of blocks
1.0.1 check the style

1.0.15 tree follower
1.0.2 check object names size
1.0.15 tree follower (recursive)

1.0.16 next non trivial token
1.0.3 check for attribute
1.0.4 check universal
1.0.9 reserved word encountered
1.0.19 search forward for one of
1.0.24 package token handler
1.0.25 task token handler
1.0.26 function procedure token handler

1.0.17 previous non trivial token
1.0.6 is statement
1.0.7 beginning of line indentation
1.0.8 check statements per line
1.0.9 reserved word encountered
1.0.22 loop continuation
1.0.26 function procedure token handler
1.0.27 entering block structure
1.0.30 search backward for one of

1.0.18 is universal
1.0.4 check universal

1.0.19 search forward for one of

2

* DETAILED DESIGN DOCUMENT (V. 1.0)

1.0.4 check universal
1.0.9 reserved word encountered

1.0.20 other indent cases
1.0.7 beginning of line indentation

1.0.21 is loop name
1.0.7 beginning of line indentation

1.0.22 loop continuation
1.0.7 beginning of line indentation

1.0.23 match paren
1.0.9 reserved word encountered
1.0.23 match paren (recursive)
1.0.26 function procedure token handler

1.0.24 package token handler
1.0.9 reserved word encountered

1.0.25 task token handler
1.0.9 reserved word encountered

1.) 96 function procedure token handler
1.0.9 reserved word encountered

1.0.27 entering block structure
1.0.9 reserved word encountered
1.0.24 package token handler
1.0.25 task token handler
1.0.26 function procedure token handler

1.0.28 entering sub block structure
1.0.9 reserved word encountered

1.0.29 caseless char
1.0.9 reserved word encountered
1.0.11 object name encountered

1.0.30 search backward for one of
1.0.9 reserved word encountered
1.0.27 entering block structure

1.0.31 handle parameter list
1.0.27 entering block structure

1.0.32 search backward
1.0.27 entering block structure

2.0.0 character set
1.0.1 check the style

2.0.1 is declaration indentation required
1.0.7 beginning of line indentation

2.0.2 small word size
1.0.7 beginning of line indentation
1.0.15 tree follower

3

DETAILED DESIGN DOCUMENT (V. 1.0)

2.0.3 vowel frequency
1.0.2 check object names size

2.0.4 address clause allowed
1.0.9 reserved word encountered

2.0.5 representation spec allowed
1.0.9 reserved word encountered

2.0.6 is a predefined pragma
1.0.9 reserved word encountered

2.0.7 note pragmas
1.0.9 reserved word encountered

2.0.8 is a proscribed package 0
1.0.9 reserved word encountered

2.0.9 line size
1.0.10 new line token encountered

2.0.10 number of errors to report
2.4.4 put flaw

2.0.11 is comment indentation required
1.0.13 comment token encountered
1.0.27 entering block structure

2.0.12 subprogram nesting level
1.0.27 entering block structure

2.1.0 pop
1.0.1 check the style
1.0.14 check for end of blocks
1.0.27 entering block structure
1.0.28 entering sub block structure

2.1.1 push
1.0.1 check the style
1.0.9 reserved word encountered
1.0.14 check for end of blocks
1.0.27 entering block structure
1.0.28 entering sub block structure

2.1.2 stack underflow
1.0.27 entering block structure

2.3.0 token is found
1.0.15 tree follower

2.3.1 create dictionary
1.0.0 style checker

2.4.1 generate report
1.0.0 style checker

2.4.2 put report line

4

DETAILED DESIGN DOCUMENT (V. 1.0)

2.4.1 generate report
2.4.3 print list

2.4.3 print list
2.4.1 generate report

2.4.4 put flaw
1.0.1 check the style
1.0.4 check universal
1.0.7 beginning of line indentation
1.0.8 check statements per line
1.0.9 reserved word encountered
1.0.10 new line token encountered
i.O.11 object name encountered
1.0.14 check for end of blocks
1.0.27 entering block structure

2.4.5 insert into list
1.0.9 reserved word encountered

3.0.0 build tokens
1.0.0 style checker

3.0.1 next character
3.0.0 build tokens
3.0.12 next identifier

3.0.2 type of token is
1.0.8 check statements per line
1.0.19 search forward for one of
1.0.23 match paren
1.0.24 package token handler
1.0.25 task token handler
1.0.26 function procedure token handler
1.0.27 entering blcck st-'ncture
1.0.30 search backward for one of

3.0.3 insert
3.0.0 build tokens

3.0.4 previous token
1.0.1 check the style
1.0.13 comment token encountered

3.0.5 type of token is
1.0 1 check the style
1.0.3 check for attribute
1.0.4 check universal
1.0.6 is statement
1.0.16 next non trivial token
1.0.17 previous non trivial token
1.0.20 other indent cases
1.0.21 is loop name
1.0.22 loop continuation
3.0.0 build tokens

3.0.6 external representation
1.0.1 check the style

5

DETAILED DESIGN DOCUMENT (V. 1.0)

1.0.9 reserved word encountered
1.0.11 object name encountered
1.0.18 is universal

3.0.7 get line
3.0.1 next character

3.0.8 next token
1.0.5 get next token and update count
1.0.8 check statements per line S
1.0.16 next non trivial token
1.0.17 previous non trivial token

dJ.9 token position
1.0.5 get next token and update count
1.0.7 beginning of line indentation
1.0.9 reserved word encountered
1.0.10 new line token encountered
1.0.13 comment token encountered
1.0.30 search backward for one of

2.0.10 line containing token
1.0.7 beginning of line indentation
1.0.19 search forward for one of
1.0.23 match paren
1.0.27 entering block structure
1.0.30 search backward for one of

3.0.11 length of comment
1.0.13 comment token encountered

3.0.12 next identifier
3.0.0 build tokens

3.0.13 look ahead
3.0.12 next identifier

3.0.14 push back character
3.0.12 next iden* fier

3.0.15 is a reserved word
3.0.12 next identifier

3.0.16 reserved word
3.0.12 next identifier

4.0.0 input file id
3.0.0 build tokens

4.0.1 output file id S
1.0.0 style checker

4.1.0 str
1.0.1 check the style
1.0.9 reserved word encountered
10.11 object name encountered
1.0.15 tree follower
1.0.30 search backward for one of

6

DETAILED DESIGN DOCUMENT (V. 1.0)

4.1.1 length
1.0.1 check the style
1.0.9 reserved word encountered
1.0.11 object name encountered
1.0.15 tree follower

4.1.2 upper case
1.0.18 is universal
2.4.5 insert into list
3.0.3 insert

7

DOCUMENTED ADA STYLE CHECKER
(DASC) PROJECT

DOCUMENTATION STANDARDS
AND GUIDELINES

Doc Stds Written By
02/18/88 Bill Davis
Version 2.2

DOCUMENTATION STANDARDS AND GUIDELINES (V. 2.2)

Table of Contents

1. Introduction .. 1

2. Document Naming .. 10

3. Document Content .. 1

4. Document Appearance.. 1
4.1. Title Page.. 1

4.1.1. Primary Title.. 1
4.1.2. Secondary Title.. 1
4.1.3. File Name.. 1
4.1.4. Document Data ... 1
4.1.5. Version Number .. 2
4.1.6. Written By. .. 2
4.1.7. Author(s) Name(s) .. 2

4.2. Table Of Contents Page... 20
4.2.1. Secondary Title ... 2
4.2.2. Table Of Contents .. 2
4.2.3. Contents Section.. 2
4.2.4. Section Page ... 2
4.2.5. Page Numbers .. 2

4.3. Document Body... 2
4.4. Section Headings... 30
4.5. Section Numbering .. 3

5. Acronym Usage ... 3

6. Project Titles.. 3

7. Revision History... 4

A- Revision History ... 4

DOCUMENTATION STANDARDS AND GUIDELINES (V. 2.2)

1. Introduction

This attachment describes the basic standards for text documents supporting the Documented Ada Style
Checker (DASC) Project. These guidelines govern the appearance of all text documents. This
attachment itself is an example of these standards.

2. Document Naming

ALL documents must be given the primary title DOCUMENTED ADA STYLECHECKER (DASC)
PROJECT. The secondary title will be a simple, unique name, preferably a few words in length. This
secondary title should allow the reader to determine the major scope of the particular document.

3. Document Content

Each document shall contain a title page, a table of contents, and a document body. The document body
shall be the exhaustive authority on the DASC project for the particular subject therein. Only non-
essential references to other documents may be mentioned. The authors of each document must ensure
that all information concerning the document subject is clearly detailed in the document itself. In
addition, each document shall contain a revision history. This history is more specifically detailed later
in this document.

4. Document Appearance

All text documents shall follow these guidelines to ensure uniform appearance. All references to font,
style, and character size (x-point) correspond to the Ready-Set-Go software package used on the
Macintosh Plus Personal Computer. The font (print type) used with all text documents shall be New
Century Schoolbook font.

4.1. Title Page

The first page of the document is the title page and will consist of seven parts.

4.1.1. Primary Title

DOCUMENTED ADA STYLE CHECKER (DASC) PROJECT, bold style in 24-point with the first letters
that form the acronym (DASC) in 30-point size, centered in the upper third of the page, ALL uppercase
letters will be used.

4.1.2. Secondary Title

Short, unique name describing the document content, bold style in 24-point, centered in the middle of the
page, ALL uppercase letters will be used.

4.1.3. Filt Name

The name of the document on the accompanying floppy disc, bold style in 14-point, left-justified in the
lower third of the page, first letter of filename will be in uppercase.

4.1.4. Document Date

The date MM/DD/YY the document was last modified, bold style in 14-point, left-justified immediately
below the filename.

4.1.5. Version Number

The word 'Version', bold style in 14-point with the number of the form m.n, where m is the major version
number and n the minor version number, left-justified, immediately below the document date.

1

DOCUMENTATION STANDARDS AND GUIDELINES (V. 2.2)

4.1.6. Written By

Words 'Written By', Bold style in 14-point, beginning irectiy below h wu~ d C1 ECIE of primary title,
on the same line as the filename.

4.1.7. Author(s) Name(s)

Name(s) of the document author(s), bold style in 14-point, located directly below words Written By', first
letter of each name in uppercase.

4.2. Table Of Contents Page

All documents will contain a table of contents comprised of five parts.

4.2.1. Secondary Title

The secondary title of the document, followed by (V. m.n) where m is the major and n the minor version
number, bold style in 10-point, one half inch from top of the page and centered on the page, ALL
characters in uppercase.

4.2.2. Table Of Contents

Words 'Table Of Contents', Bold style in 14-point, centered on the page, one inch below the auxiliary title, 0
ALL characters in uppercase.

4.2.3. Contents Section

Section number and name as they appear in the document, bold style in 14-point, left-justified with the
first letter of each word in uppercase, indented five spaces for each level of nesting, with a maximum of
three levels. -

4.2.4. Section Page

The page number will correspond to the content section, bold style in 12-point, the page on which the
section begins will be used, placed one inch from the right margin on the same line as the associated
section name. -

4.2.5. Page Numbers

The page number of the table of contents, bold style in 12-point, the pages of the table of contents should
be numbered with lowercase Roman numerals (i, ii, iii, iv) at the outer margin on the bottom of the page.

4.3. Document Body 9

The document body will be produced in single column format. Each page of the body will contain the
secondary title centered at the top of the page in bold, uppercase 10-point lettering. Each page will be
successively numbered beginning with a single 'T on the first page, placed at the outer margin on the
bottom of the page. Normal uppercase and lowercase rules will apply to the text body. Ten point, plain
style will be the standard print size. Bold and/or uppercase will be used for emphasis. 9

4.4. Section Headings

The beginning of each section and subsection should be a single line consisting of the section number
followed by the section name. Section headings will be bold style, 14-point, with the first letter of each
word in uppercase. The headings will accurately describe the material in the section. Topic headings
will be indented five spaces for each level of nesting. -

4.5. Section Numbering

2

DOCUMENTATION STANDARDS AND GUIDELINES (V. 2.2)

All sections of the document should be numbered to facilitate referencing. Section numbers are
comprised of integers and decimal points beginning with 1.0. Individual sections may be subsectioned,
but a single subsection is not permitted. Sections may be subsectioned as follows:

1. First Major Section
1.1. First Minor Section
1.2. Second Minor Section

1.2.1. First Minor Major Section
1.2.2. Second Minor Major Section

1.2.2.1. First Minor Major Minor Section
1.2.2.2. Second Minor Major Minor Section

2.0 Second Major Section

Sections may be subsectioned to as many levels as is necessary to describe their content.

5. Acronym Usage

An acronym is a word formed from the first letter(s) of major words of a compound term or phrase.
Documents contained in the Documented Ada Style Checker (DASC) Project will make extensive use of
acronyms. However, extreme care will be exercised by the authors of each document. The first use of an
acronym in each document will require the full expansion of the acronym. After initial expansion, the
acronym may be used as a substitute for the term/phrase. In lengthy documents, periodic expansions of
acronyms should be accomplished no less than every other page. These periodic acronym expansions will
occur with the initial use on a particular page. The method for expansion shall be as follows:

" The term/phrase fully spelled with the significant letter(s) boldfaced
• The acronym will follow the term/phrase enclosed in parentheses
" The acronym (with its parentheses) shall be boldfaced. The above method will alert readers to

the acronyms and hopefully, help them to better remember their meaning.

The refresher expansions will serve to reinforce the acronym meaning for each reader.

6. Project Titles

There are ten position titles associated with the Documented Ada Style Checker (DASC) Project. No
position title may be referenced by mere letters in any document. However, the letters CM may be used
to reference the function of Configuration Management (CM) and likewise QA to reference the function of
Quality Assurance (QA). No other titles may be shortened. Observe the acronym usage rule (section 5.0
in this document) when initially using Configuration Management (CM) or Quality Assurance (QA)
functions as acronyms. The following is a listing of official Project titles:

" Project Manager
" Project Consultant
* Principal Architect
" Project Administrator
" Configuration Management (CM) Manager
" Quality Assurance (QA) Manager
" Project Tester
* Project Designer
" Project Implementer
* Document Specialist

7. Revision History

Each document shall contain a separate history section. The section shall be titled "A. Revision History"
and shall be the last section of each document. The following information shall be listed for each version
of the document:

3

DOCUMENTATION STANDARDS AND GUIDELINES (V. 2.2)

* The version number
" The date the revision was made
" The author(s) of the revision
" A brief outline of the revision

The document author is responsible for the revision history prior to document approval at the formal
inspection review. The Document Specialist is fully responsible for the revision history after the initial,
formal approval (baselining) of the document.

A. Revision History

Baselined 0128/88 Bill Davis

Revision 2.0 02/09/88 Bill Davis
Added Revision History material to original document. Sections amended
include 3.0, 4.0, 4.1, 5, and A.

Revision 2.1 02/16/88 Bill Davis
Added section 5.0 Acronym Usage and section 6.0 Project Titles to document.

Revision 2.2 02/18/88 Bill Davis
Clarified responsibilities for revision history in section 7.0.

4

DOCUMENTED ADA STYLE CHECKER
(DASC) PROJECT

CODING STANDARDS

Coding Stds Written By
04/04/88 Kathy Hoang
Version 1.0 Janet Schnerre

CODING STANDARDS (V. 1.0)

Table of Contents

1. Introduction .. 1

2. Overview ... 1

3. Error Log File ... 1

4. H eading Docum entation. .. 1
4.1. File Headings for Modifications and Error-repair .. 2
4.2. Procedure or Function Subprogram Headings ... 2
4.3. Package Specification Headings .. 3
4.4. Package Body H eadings .. 3

5. In-line Docum entation .. 4

A. Revision H istory ... 5

iiI

0 CODING STANDARDS (V. 1.0)

1. Introduction

This document presents a set of guidelines which provide self documentation, uniformity and clarity to
all Documented Ada Style Checker (DASC) source code. These guidelines pertain to the documentation
of the changes to the source code. Changes to the source code will match the code's existing style
whenever possible.

2. Overview

0 A working version of DASC exists, and yet the cod-e is likely to undergo substantial change during its
useful life cycle. There are two primary reasons for making changes to the source code of an existing
production program.

1. Fix an error in DASC. An error occurs when the source code does not perform the intended
function. Each error correction must be documented in an error log file, in the file heading of the
file that was changed, in the subprogram or package heading, and in the code itself.

2. Modify the source code. A modification changes the function of the code. Each modification must
be documented in the file heading, the subprogram or package heading, and in the source code.
Detailed explanation of the contents of the documentation, along with examples, is in the
following sections.

0 3. Error Log File

The error log file must be maintained by the Project Implementer. This file will serve as a source of
warning against errors for future implementers of DASC. Each time it is necessary to change the source
code so that it functions correctly, an entry must be made in the error log file. The entry must contain
the following information:

* Discrepancy Report number
" Project Implementer and date
* File and subprogram or package name in which error was located
* How error was discovered
" Changes made to repair the error

0 Each entry in the error log must be in the following format:

DISCREPANCY REPORT NUMBER:
PROJECT IMPLEMENTER:
DATE:

LOCATION OF ERROR: Give the filename and specification or body that contains the error.

DESCRIPTION OF DISCOVERY OF THE ERROR: Explain the circumstances in which the error was
discovered.

CHANGES MADE TO REPAIR THE ERROR: Briefly describe the changes made to the source code to
correct the error.

10 4. Heading Documentation

Heading documentation introduces the file, subprogram or package by supplying the reader with
historical information.

4.1. File Headings for Modifications and Error-repair

Information describing the change must be added following the existing file heading. This must include
the following:

CODING STANDARDS (V. 1.Cj 0

" Release number
* Change Request or Discrepancy Report number
• Project name, Project Implementer and date
" Purpose of modification
" Procedure, function, or package that was modified

The heading documentation must be in the following format:

-- RELEASE NO:
-- CHANGE REQUEST/DISCREPANCY REPORT NO: 0
-- PROJECT NAME:
-- PROJECT IMPLEMENTER:

DATE:

-- MODIFICATION PURPOSE: Briefly describe the purpose for the modification.

-- PROCEDURES MODIFIED: List the procedures that were modified within main.

-- FUNCTIONS MODIFIED: List the functions that were modified within main.

-- PACKAGES MODIFIED: List the packages that were modified.

Further information must be added to the heading for the procedure, function or package that is 0
modified.

4.2. Procedure or Function Subprogram Headings

Information describing the change to the subprogra-n must be added following the existing subprogram
heading. This must include the following:

" Change Request or Discrepancy Report number
• Project Implementer and the date
" Description of change
* Changes to the procedure's parameters or algorithms
0 Changes in the list of subprograms that the procedure invokes

S
The heading documentation must be in the following format:

-- CHANGE REQUEST/DISCREPANCY REPORT NO:
-- PROJECT IMPLEMENTER:
-- DATE:

-- DESCRIPTION OF CHANGE: Briefly describe all changes made in the source code including how
-- it worked originally and how it works after the modification.

-- PARAMETERS CHANGED: List all changes made to the original parameters (if any).

ALGORITHMS CHANGED: Describe the new algorithm if the old algorithm no longer applies to
-- the code.

-- SUBPROGRAMS MODIFIED: List the invoked subprograms that were changed.

4.3. Package Specification Headings

Information describing the change must be added following the existing file heading. This must include
the following:

2

CODING STANDARDS (V. 1.0)

" Change Request or Discrepancy Report number
* Project Implementer and the date
" Description of change
* Changes in the resources used

The heading documentation must be in the following ?, at:

-- CHANGE REQUEST/DISCREPANCY REPORT NO:
-- PROJECT IMPLEMENTER:
-- DATE:

-- DESCRIPTION OF CHANGE: Briefly describe all changes made in the source code including how
-- it worked originally and how it works after the modification.

-- RESOURCES MODIFIED: List changes in the use of resources from imported packages. This
-- includes types, constants, variables, procedures, functions and exceptions.

If a procedure within the package specification is modified, the following information must appear after
the existing procedure heading:

" Change Request or Discrepancy Report number
" Project Implementer and the date
" Description of change
o Changes in the exceptions raised by the procedure

The heading documentation must be in the following format:

-- CHANGE REQUEST/DISCREPANCY REPORT NO:
-- PROJECT IMPLEMENTER:
-- DATE:

-- DESCRIPTION OF CHANGE: Briefly describe all changes made in the source code including how
-- it worked originally and how it works after the modification.

-- EXCEPTIONS RAISED: List the changes in the exceptions raised by the procedure.

4.4. Package Body Headings

Information describing the change must be added following the existing file heading. This must include
the following:

• Change Request or Discrepancy Report number
o Project Implementer and the date
o Description of change
o Changes in the resources used

The heading documentation must follow this format:

CHANGE REQUEST/DISCREPANCY REPORT NO:
-- PROJECT IMPLEMENTER:
-- DATE:

-- DESCRIPTION OF CHANGE: Briefly describe all changes made in the source code including how
-- it worked originally and how it works after the modification.

-- RESOURCES MODIFIED: List changes in the use of resources from exported packages. This
-- includes types, constants, variables, procedures, functions and exceptions.

3

CODING STANDARDS (V. 1.0)

If a procedure within the package body is modified, the following information must appear after the
existing procedure heading:

" Change Request or Discrepancy Report number
* Project Implementer and the date
" Description of change
* Changes to the procedure's algorithm
" Changes in the list of subprograms invoked by this procedure

The heading documentation must follow this format:

-- CHANGE REQUEST/DISCREPANCY REPORT NO:
-- PROJECT IMPLEMENTiER:
-- DATE:

DESCRIPTION OF CHANGE: Briefly describe all changes made in the source code including how
-- it worked originally and how it works after the modification.

-- ALGORITHMS CHANGED: Describe the new algorithm if the old algorithm no longer applies to the
-- code.

-- SUBPROGRAMS MODIFIED: List the invoked subprograms that were changed.

5. In-line Documentation

When an error is repaired or a modification is made to the code, the original source code must be left in
place, but preceded by the comment symbol, two consecutive hyphens (--). The original source code
remains visible to Project Implementers, and serves as historical documentation. The Change Request or
Discrepancy Report Number and an explanation of the effect of the change must be included. The in-line
documentation of an error correction must have the following format:

-- ERROR REPAIR
-- DISCREPANCY REPORT NUMBER xxx

-- DESCRIPTTON: Briefly describe the error and the change that was made.

-- REMOVED: Oldcode

-- ERROR REPAIR BEGINS
...

Newcode ...

-- ERROR REPAIR ENDS

The in-line documentation of a modification must have the following format:

-- MODIFICATION
-- CHANGE REQUEST NUMBER xxx

-- DESCRIPTION: Briefly describe what is being modified.

-- REMOVED: Oldcode

4

CODING STANDARDS (V. 1.0)

-- MODIFICATION BEGINS

Newcode ...

-- MODIFICATION ENDS

A. Revision History

Version 0.1 01/29/88 Janet Schnerre and Kathy Hoang

Version 0.2 02/28/88 Janet Schnerre and Kathy Hoang
Made changes so that examples, acronyms, lists, and headings are consistent
throughout document. Clarified differences between an error and a
modification. Added Revision History material.

Version 0.3 03/17/88 Janet Schnerre and Kathy Hoang
Corrected document format and spelling. Clarified reasons for in-line
documentation.

Baselined 04/04/88 Bill Davis

5

DOCUMENTED ADA STYLE CHECKER
(DASC) PROJECT

QUALITY ASSURANCE PLAN

QA Plan Written By
04/04/88 Sherrie A. Davis
Version 1.0

ppLal•[Iiiill~lIr l iDn

QUALITY ASSURANCE PLAN (V. 1.0)

Table of Contents

1. Introduction .. 1
1.1. Acronym s .. 1
1.2. References .. 1

2. Quality Assurance M anagem ent ...
2.1. Organization ... 1
2.2. Responsibilities .. 1

3. Elem ents of the Quality Assurance Plan ... 2
3.1. Docum entation Standards ... 2
3.2. Review s .. 2

3.2.1. Code Review s ... 2
3.2.2. Inform al Review s .. 2
3.2.3. Form al Review s .. 2

4. Planned Review s .. 3
4.1. Schedule .. 3
4.2. Docum ents .. 4

4.2.1. Requirem ents Docum ent ... 4
4.2.2. Configuration M anagem ent Plan. ... 4
4.2.3. Quality Assurance Plan. ... 4
4.2.4. Coding Standards ... 4
4.2.5. Prelim inary Design Docum ent ... 5
4.2.6. Detailed Design Docum ent. .. 1 5
4.2.7. Test Plan .. 5
4.2.8. U ser M anual .. 5

5. Tool .. 5

6. Change Control Board .. 6

A. Revision History .. 6

QUALITY ASSURANCE PLAN (V. 1.0)

1. Introduction

The purpose of this plan is to identify Quality As-,uri'nce (QA) managenerI, and to describe t!' -_",dards
and procedures implemented in the Quality Assurance Plan for the Documented Ada Style Checker
(DASC) Project. The role of the Change Control Board in the QA process is discussed.

1.1. Acronyms

The following acronyms appear within the text of this plan:

CCB Change Control Board
CDR Critical Design Review
CM Configuration Management
CR Change Request
DASC Documented Ada Style Checker
DR Discrepancy Report
PDR Preliminary Design Review
QA Quality Assurance

1.2. References

The following documents are referenced in the text of this plan:

" Coding Standards
" Configuration Management Plan
* Detailed Design Document
" Documentation Standards and Guidelines
" Preliminary Design Document
" Requirements Document
e Test Plan
" User Manual

These documents are part of the DASC Project and can be obtained from the DASC Project team.

2. Quality Assurance Management
This section describes the organization and responsibilities of QA management.

2.1. Organization

The QA organization consists solely of the QA Manager.

2.2. Responsibilities

The QA Manager is responsible for the overall quality of the released product which includes the
modified Style Checker software and project documentation. Primary responsibilities include the
following:

- Preparing the QA Plan
* Calling and conducting formal reviews of documentation
* Monitoring software development using McCabe's cyclomatic complexity measure

QUALITY ASSURANCE PLAN (V. 1.0)

3. Elements of the Quality Assurance Plan

This section describes documentation standards and methods to provide for compliance with established
technical requirements.

3.1. Documentation Standards

Documentation Standards and Guidelines developed by the Document Specialist describe the conventions
which pertain to all documentation associated with the DASC Project. Adherence to these guidelines will
insure uniformity of all text documents. The Preliminary Design and Detailed Design Documents are
exceptions to this policy. Because the tool Excelerator shall be used to produce these documents, they
shall be in Excelerator report format.

After development, all documents will be considered in a formal review. After acceptance in the review
process, the final form will be controlled by the Document Specialist to insure compliance with
guidelines. Changes to documents shall be recorded in the Revision History section. The following
information shall be listed for each version of the document:

" Version number
" Date the revision was made
" Author(s) of the revision
" Brief outline of the revision

3.2. Reviews

This section describes the informal and formal review methods used for quality assurance on the
Documented Ada Style Checker (DASC) Project.

3.2.1. Code Reviews

Code reviews shall take the form of informal walkthroughs involving at least two people with one being a
Project Implementer. All code shall pass a walkthrough before becoming part of the Style Checker source
code.

3.2.2. Informal Reviews

Informal reviews shall take the form of discussions involving two or three members of the DASC Project
team or Project Manager. Any member may request an informal review for such purposes as gaining
another perepective, receiving expert advice, or reporting project progress. These informal reviews have
no restrictions, and the QA Manager will have no responsibilities with respect to these reviews.

3.2.3. Formal Reviews

Formal reviews shall take the form of inspections involving four to six members of the DASC Project
team. The QA Manager will schedule and conduct inspections. The QA Manager will insure a written
record of the proceedings is kept, insure decisions made during the inspection are implemented, and
determine if re-inspection is needed.

Inspections are the primary means of the QA Manager to check the DASC Project for compliance with
established requirements. Therefore, the main goal of an inspection shall be to discover problems as soon
as possible by utilizing the resources of the entire project team in an organized manner. Finding
solutions to problems is not a function of inspections.

Specific roles will be assigned to participants. These roles and their responsibilities are as follows:

Leader The QA Manager has this role. Responsibilities include scheduling, insuring all
participants have prior access to products to be reviewed and adequate time to

2

QUALITY ASSURANCE PLAN (V. 1.0)

consider them, moderating the discussion according to the rules which govern
behavior, determining if inspection goals have been met, and reporting results.

Recorder This role is assigned on a review-by-review basis. Responsibilities include
capturing inspection discussion in a concise, meaningful form, and producing a
list of action items (Action List) for approval of the participants.

Presenter The person producing the product being reviewed has this role. Responsibilities
include presenting an overview of the product and answering any questions. At
re-inspections, the Presenter must address each item on the Action List
indicating the change made or justifying the decision not to make the change.

Reviewers These roles are assigned on a review-by-review basis. Responsibilities include
finding all errors in the product and preparing properly for the review.

Project Manager participation in inspections is limited to support by allotting sufficient time in the
project schedule. Management absence at inspections helps establish a positive, non-threatening setting.

To facilitate a professional and productive atmosphere, inspections will be governed by specific rules of
behavior. The rules emphasize that the product is reviewed, and not the producer of that product. Those
rules which do not deal with the previously stated participant roles and responsibilities are as follows:

" Each Reviewer must make at least one critical comment and one compliment.

" No attack is to be made on the Presenter. The only comments allowed are those referencing the
product.

" The Presenter will not respond to comments about the product except to ask for clarification of
the comment.

" No solutions are to be presented. An inspection is held to uncover errors, not solve problems.

" The Leader will call upon Reviewers for comments. No one speaks unless called upon by the
Leader.

4. Planned Reviews

This section describes the review schedule and documents which are subject to formal review.

4.1. Schedule

Four milestones have been established as follows:

February 9, 1988 Requirements Document
Configuration Management Plan
QA Plan
Coding Standards

February 25, 1988 Preliminary Design Document

March 22, 1988 Detailed Design Document
Test Plan

April 19, 1988 User Manual

Individual copies of all documents are to be made available to the inspection group at least one week
prior to review dates.

3

QUALITY ASSURANCE PLAN (V. 1.0)

4.2. Documents

Eight documents will be presented for formal review.

4.2.1. Requirements Document

The Requirements Docu'-ent shall contain a detailed set of user requirements for the software and the
external interfaces. It shJl include the following:

* Functional requirements (what the system does)
" Physical requirements (how the system does it)
" Constraints (timing and performance needs, external interfaces with other systems, hardware,

and operating system)

Since the intended audience is system users, no technical jargon shall be used. Each requirement shall
be able to be validated. The document shall be complete with no implied requirements. The document
must be signed by both the customer and Principal Architect. It can be changed only by renegotiation.

The Principal Architect shall prepare the Requirements Document and present it for formal review on

February 9, 1988.

4.2.2. Configuration Management Plan

The Configuration Management (CM) Plan shall document the methods to be used for identifying the
software product items, controlling and implementing changes, and recording and reporting change
implementation status.

The CM Manager shall prepare the CM Plan and present it for formal review on February 9, 1988.

4.2.3. Quality Assurance Plan

The QA Plan shall contain the standards and procedures implemented to provide confidence that the
DASC Project conforms to established technical requirements.

The QA Manager shall prepare the QA Plan and present it for formal review on February 9, 1988. In this
review, the QA Ma-iger will fill the role of Presenter instead of Leader.

4.2.4. Coding Standards

The Coding Standards shall contain the minimum style conventions expected of all source code produced
by the DASC Project. Adherence to these standards will help insure the uniformity and maintainability
of all source code.

The Project Implementers shall prepare the Coding Standards document and present it for formal review
on February 9, 1988.

4.2.5. Preliminary Design Document

The Preliminary Design Document shall contain the architectural design specifications. Architectural
design specilications shall establish a high level structural view of the system. They shall refine the
conceptual view of the system, decompose high-level functions, and establish relationships and
interconnections among packages, data types, and data operations. Packages shall be represented in a
hierarchical diagram with textual descriptions of the main functions.

The Project Designer shall prepare the Preliminary Design Document and present it for formal review on
February 25, 1988. The major goal of the Preliminary Design Review (PDR) shall be to insure the design
represents an accurate baseline of the Style Checker before modification.

4

QUALITY ASSURANCE PLAN (V. 1.0)

4.2.6. Detailed Design Document

The Detailed Design Document shall contain the internal design specifications. Internal design
specifications shall describe the internal structure of each package and record design decisions. Each
package will be exploded with graphs of each procedure. Structure charts for the procedures shall be
included.

The Project Designer shall prepare the Detailed Design Document and present it for formal review on
March 22, 1988. The goals of the Critical Design Review (CDR) will be basically the same as those for the
PDR with the inclusion of additional design effort.

4.2.7. Test Plan

The Test Plan shall contain descriptions of functional, performance, and stress test cases to verify and
validate the software as it develops, including tracing requirements through specifications, design,
coding, and test. It shall specify the objectives of testing, the test completion criteria, and the methods
used on particular modules. Modules which are modified shall be checked using the A-Test tool which
includes Source Instrumentor, Automatic Path Analyzer, Performance Analyzer, Self-metric Analysis
and Reporting Tool, and Path Analyzer.

The Project Tester shall prepare the Test Plan and present it for formal review on March 22, 1988.

4.2.8. User Manual

The User Manual shall contain descriptions of the required data and control inputs, input sequences,
options, program limitations, and other items necessary for successful execution of the software. All
error messages shall be identified and corrective actions described. A method of describing user-
identified problems for software support shall be included.

The Document Specialist shall prepare the User Manual and present it for formal review on April 19,
1988. The goals of this review shall be to insure completeness, readability, and usability of the User
Manual.

5. Tool

The McCabe cyclomatic metric is a software tool which computes complexity based on the control flow
graph of the program. The tool builds the flow graph and computes the cyclomatic number for each
subprogram body. Specifications do not have a complexity associated with them. In addition, it sums the
number of nodes and edges in all program units and computes a cyclomatic number for the entire
program. McCabe's cyclomatic complexity is defined as follows:

V(G) = e - n + 2p

where e is the number of edges, n is the number of nodes, and p is the number of connected components.

Project Implementers shall use McCabe's cyclomatic complexity measure to monitor changes in the Style
Checker source code. The complexity shall not increase by more than 2 without justificat-nn. The QA
Manager shall monitor software development using McCabe's metric. If the established requirements
have not been met, a Discrepancy Report (DR) shall be submitted to the Change Control Board.

6. Change Control Board

The Change Control Board (CCB) shall review all Change Requests (CR)s and Discrepancy Reports
(DR)s. The Principal Architect, Project Administrator, CM Manager, and Document Specialist shall
serve on the CCB. Each CCB meeting must have a quorum of three members. The Principal Architect
shall call meetings as dictated by submission of CRs or DRs with a maximum of two meetings a week. At
each meeting, pending CRs and DRs are approved or rejected with the Principal Architect having
primary responsibility for decisions. The Project Administrator shall act for the Principal Architect in

5

QUALITY ASSURANCE PLAN (V. 1.0)

her absence. The Principal Architect shall publish a weekly summary of all actions taken. The CCB shall
maintain separate files of Waived, Repaired, Pending, and new CRs and DRs. CRs and DRs may be
submitted by any member of the DASC Project team to any CCB member or to thi Project Manager.

A. Revision History

Version 0.1 02/02/88 Sherrie A. Davis

Revision 0.2 03/15/88 Sherrie A. Davis
Added sections 1.1. Acronyms, 1.2. References, 5.0. Tool, and A. Revision

History. Added inspection rules in section 3.2.3. Added new information concerning the
CCB in section 6.0.

Baselined 04/04/88 Bill Davis

6

DOCUMENTED ADA STYLE CHECKER
(DASC) PROJECT

TEST PLAN

Test Plan Written By
04/29/88 Scott Meyer
Version 1.0

TEST PLAN (V. 1.0)

Table of Contents

1. Introduction .. 1
1.1. Scope .. 1
1.2. Acronym s .. 1
1.3. References .. 1

2. Test Item s ... 1

3. Requirem ents To Be Tested ... 2

4. Requirem ents N ot To Be Tested .. 2

5. Testing Approach 3
5.1. System Testing .. 3
5.2. Regression Testing .. 3

6. Responsibilities .. 3

A. Revision History .. 3

Appendix. Test Cases 5

ii0

TEST PLAN (V. 1.0)

1. Introduction

The purpose of this Test Plan is to define and describe the activities and procedures to be implemented in
the formal testing of the Documented Ada Style Checker (DASC) Project. This plan is structured
according to the DASC Documentation Standards and Guidelines.

1.1. Scope

This plan covers system testing of DASC. Also covered in this plan is the performing of regression
testing on DASC.

1.2. Acronyms

The fcllowing acronyms are referred to in this plan:

DASC Documented Ada Style Checker
DEC VAX Digital Equipment Corporation Virtual Address eXtended
CCB Change Control Board
CM Configuration Management
DR Discrepancy Report
IPFW Indiana University Purdue University at Fort Wayne

1.3. References

The following documents are referred to in this plan:

* Documentation Standards and Guidelines
* Requirements Document

The above documents are part of the DASC Project and may be obtained from the DASC Project group.

2. Test Items

The test cases (programs) reside in the Digital Equipment Corporation's Virtual Address eXtended (DEC
VAX) directory [C474A7.TEST]. The names of the files containing test cases and the corresponding flaw
and style reports for version 1.0 of the Style Checker are as follows:

TEST1.ADA;1, TEST1.FLW;1, TEST1.STY;1
TEST2.ADA;1, TEST2.FLW;1, TEST2.STY;1
TFST3.ADA;1, TEST3.FLW;1, TEST3.STY;1
TEST4.ADA;1, TEST4.FLW;1, TEST4.STY;1

If the Style Checker is updated or modified, the new versions of the flaws and style report files will bc
renamed to reflect the new version of the Style Checker. The renaming will be as follows:

TESTI_1.FLW, TESTI_1.STY

TEST2_I.FLW, TEST2_1.STY

These are modified test results for version 1. 1 of the Style Checker.

TEST1_2.FLW, TESTI_2.STY
TEST2_2.FLW, TEST2_2.STY

These are modified test results for version 1.2 of the Style Checker.

3. Requirements To Be Tested

TEST PLAN (V. 1.0)

The following requirements validation matrix lists the style reporting requirements specified in the
Requirements Document (Section 3.3) that will be tested and the corresponding test case that covers each
requirement. The test cases can be found in the appendix of this document.

Requirement Test Case 0

3.3.1.1 Invalid Object Case 1
3.3.1.2 Invalid Keyword Case 1
3.3.1.3 Name Segment Size 1
3.3.1.4 Average Name Size 1

3.3.2.1 Occurrences of Multiple Statements Per Line 2
3.3.2.2 Inconsistent Indentation 2
3.3.2.3 Missing Blank Lines 2
3.3.2.4 Loops Without Names 2

3.3.3.1 Percent of Literal Usage 3
3.3.3.2 Percent of Universal Type Usage 3
3.3.3.3 Attribute Use 3
3.3.3.4 Ada Specific Features Used 3

3.3.4.1 Number of Subprogram Parameters 4
3.3.4.2 Subprogram Size 1
3.3.4.3 Number of Loop Exits 4
3.3.4.4 Nesting Levels 4

3.3.5.1 Number of Comments 3
3.3.5.2 Average Comment Size 3

3.3.6.1 Line Length Violations 3
3.3.6.2 Address Clauses Used 4
3.3.6.3 Pragmas Used 3
3.3.6.4 Representation Specification Used 3

3.3.7.1 Keywords Used 2
3.3.7.2 Keywords Allowed 2

4. Requirements Not To Be Tested

The user interface requirements specified in the Requirements Document (Section 3.1) shall be tested by
the entire DASC group. The user interface or shell is a project developed environment for running the
Style Checker. Each DASC team member will test the shell and make recommendations in writing to the
Project Implementers. Each recommendation shall be answered until all members have been satisfied.

The style definition requirements specified in the Requirements Document Section 3.2) shall not be
tested by the Project Tester. The Project Tester will assume that the style convention used at Indiana
University - Purdue University at Fort Wayne (IPFW) has been previously defined in the DASC tool.
Only the IPFW style convention will be tested.

5. Testing Approach

Two main testing approaches will be taken by the Project Tester. They are system testing and regression
testing.

5.1. System Testing

2

* TEST PLAN (V. 1.0)

Black-box (functional, requirements based) testing is a method in which test cases are derived from an
analysis of the system's functional specifications. System testing involves the black-box testing of the
entire DASC system System testing shall be done by executing the Style Checker on the test cases,

0 TestN.ada where N is 1,2,3,4, residing in the DEC VAX directory [C474A7.TEST]. The test cases will
verify and validate the style reporting requirements specified in the Requirements Document by showing
valid and invalid equivalence ciasses for each requirement.

5.2. Regression Testing

0 Regression testing is performed after a modification or correction on the DASC system has been made.
Individual unit or module testing shall be done by the Project Implementers after a modification or
correction.

Upon unit testing, the Project Implementers will notify the Configuration Management (CM) Manager
which module(s) have been changed.

0 After DASC has been reconfigured, the CM Manager will notify the Project Tester that a new version of
DASC is ready to be tested and will specify which modification or correction has been made. The Project
Tester will then determine which test case(s) specifically cover the change(s) that have been made and
execute the Style Checker on these test case(s) to verify that the change has been performed correctly. If
the change is found not to perform correctly, then the Project Tester will submit a Discrepancy
Report(DR) to the Change Control Board (CCB). If the changed module(s) performs correctly, the
remaining test cases will be performed and the flaw and style reports produced will then be compared to
the original results to verify that no differences ey t. If a difference other than the intended change is
found, a DR will be submitted to the CCB by the Project Tester. If the system regression test produces
correct results, the Project Tester will notify the CM Manager.

6. Resporidbilities

The Project Tester will be responsible for managing and executing the testing activities. Primary
responsibilities include the following:

" Preparing the Test Plan
" Developing the test cases for DASC
" Preparing baseline system test results
• Testing modified code using isolated test cases
" Doing regression testing on the system after each modification or correction

A. Revision History

Version 0.1 03/31V88 Scott Meyer

Revision 0.2 04/24/88 Scott Meyer
Added test cases to the Appendix. Completed the requirements validation
matrix. Added names of files containing test cases to section 2.0. Added
definition of a shell to section 4.0. Added definition of black-box testing to
section 5.1. Made wording changes and corrected spelling mistakes
throughout document. Added responsibilities to section 6.0.

Revision 0.3 04/29/88 Scott Meyer
Made additional wording changes and corrected spelling errors.

3

TEST PLAN (V. 1.0)

Appendix. Test Cases

lEditor's Note: Seven test cases were delivered with this document. The correspondences between these
seven and the four test cases mentioned in sections 2 and 3 are not known.]

TEST 1

-- This module is used to test the Coding Standards Checker for ADA - The
-- tests that are to be applied to the module are Test Al indices 1 thru 7
-- and 14. Various additions have been added to a module originally named
-- Menu.ada authored by Jerry Baskette. Changes were made January 30, 1985

by James Rea.

-- Additions and changes have been commented throughout the module. These
-- comments relate the tests to the code.

with CURRENT EXCEPTION;
seoarate (HELPUTILITY)

-- The reserved word 'procedure' is in upper case
-- This should be flagged as improper case - Test Al index 1

PROCEDURE PRINTTOPICMENU (NODE: in HELPLINK) is

LINE COUNT: TEXT RANGE := 0; -- number of lines to be output
TOTAL-NUMBEROFTOPICS: NATURAL := 0;

-- The name NUMTOPICSINCOLUMNONE in the wrong case

-- This should be flagged as improper case - Test Al index 2

num TOPICS IN COLUMNONE: POSITIVE : 1;
TOPICS IN COLUMNTWO: BOOLEAN := FALSE;
OUTPUT LINE: HELP INFO TEXT LINE;
OUTPUTBUFFER: SAVEDTEXT; -- buffer of OUTPUTLINES to be output
RIGHTCOLUMNSTART: INTEGER := (MAXLINELENGTH/2) + 2;

-- The name EVEN should flag the short word (length 4)

EVEN: BOOLEAN :- FALSE;

-- The name 'EVENS' should not flag the short name defn. Test Al index 6

EVENS: POSITIVE := 1;

--The names 'I,J,K' should not be flagged. Test Al index 7

4

TEST PLAN (V. 1.0)

I: POSITIVE;
J: POSITIVE;
K: POSITIVE;
TESTFLAG: BOOLEAN;
TESTFLAG: BOOLEAN;

--The name 'TSTFLG' should be flagged as an abbreviation
--Test Al index 14

--

TSTFLG: BOOLEAN;
TEST FLAG: BOOLEAN;
TESTFLAGS: BOOLEAN; --should be flagged for indentation

TEST FLAGS: BOOLEAN; --should be flagged for indentation
CURRENT NODE: HELPLINK := null;--flag for indentation
COL ONE NODE: HELP LINK null;--flag for indentation
COLTWONODE: HELPLINK :=null;--flag for indentation

begin

--Indentation should be checked per Test A2

CURRENTNODE := NODE.SUBTOPICS;
-- count the number of subtopics for this node

while CURRENT NODE /= null loop
TOTALNUMBER OF TOPICS := TOTALNUMBEROFTOPICS + 1;
CURRENT NODE:= CURRENTNODE.NEXTTOPIC;

end loop;

-- If there is more than one topic, then split the topics into two columns
-- Column one will have the first half and column two the second half.
-- If there are an odd number of topics, column one will have the odd number

--The following 'if statements should be flagged as two statements
--on one line. Test A2 index 1

if TOTALNUMBEROFTOPICS /= 0 then if TOTALNUMBEROFTOPICS >= 2 then
TOPICS IN COLUMN TWO := TRUE;
NUMTOPICSINCOLUMNONE := TOTALNUMBEROFTOPICS / 2;

-- More than one topic, split the number

--See if odd number. If so, increment the topic count so odd goes in 1st col.

if TOTAL NUMBER OF TOPICS /= (TOTAL NUMBEROFTOPICS/2) * 2 then
NUMTOPICSINCOLUMNONE : NUMTOPICSINCOLUMNONE + 1;

else

--A second test of multiple statements on one line.

- ------------------ -- --- --- --- ---- --- --- --- --5

TEST PLAN (V. 1.0)

EVEN := TRUE; end if; end if; --three statements on this line!

-- set the beginning node for each column

COL ONE NODE NODE.SUBTOPICS;
CURRENT-NODE NODE.SUBTOPICS;

--The following 'for' statement should flag improper indentation
--Test A2 index 3

for I in 1..NUMTOPICS IN COLUMNONE loop
COL TWONODE CURRENTNODE.NEXTTOPIC;
CURRENT NODE CURRENTNODE.NEXTTOPIC;
end loop;

--The tollowing 'while' and 'if' statements should be flagged for
--improper indentation. Test A2 index 3
--Lack of blank line following the above 'for' loop should be flagged.
--This lack of blank line preceeding the 'if' below should also
--should also be flagged. Text A2 indices 8 & 9 respectively.

if TOPICSINCOLUMNTWO then
while COL TWO NODE /= null loop
OUTPUTLINE := BLANKLINE; -- blank the line buffer

-- Put first topic in left half of output line

OUTPUTLINE(l..COLONENODE.NAMELENGTH) :=
COLONENODE.NAME(I..COLONE__NODE.NAMELENGTH);

-- Put second topic in second half of output line

OUTPUT LINE(RIGHTCOLUMNSTART..RIGHTCOLUMNSTART +
COLTWONODE.NAMELENGTH - 1) :=

COLTWONODE.NAME(..COLTWONODE.NAME_LENGTH);

-- Put the line in the output buffer. LINECOUNT is incremented automatically

--This is a block of comments to check the proper indentation of •
--the block of comments. This is done in accordance with Test A2

--index 6. This should be flagged.

HELPINFO SUPPORT.APPEND TODISPLAY(OUTPUTLINE,OUTPUTBUFFER,LINECOUNT);
COLONENODE LCOL_ONENODE.NEXTTOPIC;
COL TWONODE COL_TWONODE.NEXTTOPIC;

end loop;
end if;

if not EVEN then

-- Put the odd topic in the output buffer 0

6

TEST PLAN (V. 1.0)

OUTPUT LINE := BLANK LINE;
OUTPUT LINE(. .COLONENODE.NAMELENGTH)

COLONENODE.NAME(1..COLONENODE.NAMELENGTH);
HELPINFOSUPPORT.APPENDTO-DISPLAY(OUTPUTLINE,OUTPUTBUFFER,LINECOUNT);

end if;

-- Now print the output buffer

HELPINFOSUPPORT.PRINTTEXT(OUTPUTBUFFER,LINECOUNT);
end if;

--Lack of blank lines separating the major block (exception) should
--be flagged. Test A2 index 7.

exception
when others => text _-.nitline("Print Menu " & CURRENTEXCEPTION.NAME);
raise;

end PRINTTOPICMENU;

-- TESTIA

-- Test for Short names

procedure XYZ (Z : in INTEGER; Y : OUT FLOAT) is
begin

return;

end XYZ;

-- TESTIB

-- Test for UNDERSCORES -- the result should flag
-- this program as having not enough underscores,
-- i.e. the name segment size too small!

procedure XYZANDPDQ FOR LONG NAME (
ZYZENZUZEN ZULULONG : in INTEGER;

YYILLERBYTEYTHISISALSOTOOLONG : OUT FLOAT) is
begin

return;
end XYZANDPDQFORLONGNAME;

-- TEST 2

package body INITIALIZE is

7

TEST PLAN (V. 1.0)

--The following assignments should raise flags for Test A4
--The assignments that show 1 and 0 should not be flagged for Test A4

OPENED FALSE;
CHECK 5;
CHECKONE 1; --should not be flagged
CHECKONE := 0; --should not be flagged
CHECK : 150;
CHECK : 32767;
CHECKTWO: "FIVE";
CHECKTWO "FOUR";

WHILE not OPENED loop
FILEIO.OPENINPUTFILE(INPUTFILES(FILELEVEL) .FILE,OPENED,DUMMY);

end loop;
if TEXT IO.IS OPEN(INPUTFILES(FILELEVEL) .FILE) then
OPENED := FALSE;
while not OPENED loop
FILEIO.OPENOUTPUTFILE(OUTPUTFILE,

TEXTIO.NAME(INPUTFILES(FILELEVEL) .FILE),OPENED);
end loop;
HOST LCD IF.GETTIME(TODAY,TIMEERROR);
if TIME ERROR = HOSTLCDIF.NOTANERROR then
TIME STAMP := " ;
TEXT_IO.INTEGERIO.PUT(TIMESTAMP(I1..12),TODAY.MONTH);
TIME STAMP(13) := '/';
TEXTIO.INTEGERIO.PUT(TIMESTAMP(14..15),TODAY.DAY);
TIMESTAMP(16) := '/';
TEXT IO.INTEGER IO.PUT(TIME STAMP(17..20),TODAY.YEAR);
SECONDSSINCEMIDNIGHT := TODAY.TICKSSINCEMIDNIGHT /

TODAY.TICKS-PERSECOND;
HOURS := SECONDS SINCE MIDNIGHT / SECONDS-PERHOUR;
MINUTES : ((SECONDS_SINCEMIDNIGHT) - (SECONDSPERHOUR * HOURS)) /

SECONDSPERMINUTE;
SECONDS : ((SECONDSSINCEMIDNIGHT) - (SECONDSPERHOUR * HOURS)) -

(SECONDS PER MINUTE * MINUTES);
TEXTIO.LONG INTEGER IO.PUT(TIMESTAMP(1..2),HOURS);
TIME STAMP(3) := ':';
TEXTIO.LONG INTEGERIO.PUT(TIMESTAMP(4..5),MINUTES);
TIME STAMP(6) := ':';
TEXTIO.LONGINTEGERIO.PUT(TIMESTAMP(7..8),SECONDS);

else
TIME STAMP

end if;
end if;

end INITIALIZE;

-- TEST3A

-- This iz a modification or ±est , to .nciude AL±. ad Keywords!

with TEXTIO;
procedure INSERT (LENGTH : in ID RANGE;

STRG in ID STRING;

TEST PLAN (V. 1.0)

T : in out TREE;
REFERENCELINE NUMBER : in LINENUMRANGE) is

FOLLOW CHAIN REFPTR; -- used to follow
-- chain of references

TESTER : BOOLEAN := TRUE;

--The following package declarations and package bodies have been
--added to this module for testing purposes.

package CHECKER is

task INTERRUPT is
entry DONE;
for DONE use at 16#40#;

function HELP return BOOLEAN is separate;

subtype XDATA is new REALS digits 4;
type YDATA is REALS digits 4 range 0.0 .. 100.0;
LIMIT : constant INTEGER := 3;

type INFO is
record

VERTICAL : YDATA;
HORIZONTAL : XDATA

end record;
limited private

type NEWPTR is access INFO;

OOPS : exception;
generic
package COUNTER is
begin

return;
end COUNTER;

begin

LOOP NAME:
loop
<<INTERRUPT NAME>>

accept INTERRUPT do
delay 60.0;
GET IT(INFO.all);

end INTERRUPT;

declare
EXTRA : exception renames OOPS;
FRACT : FRACTION delta 0.0001;
SAVER : array(0..l) of BOOLEAN;

begin
for I in reverse 1..31 loop

if abs(INFO.HORIZONTAL) mod 30 = 0 and then
not HELP

9

TEST PLAN (V. 1.0)

or else INFO.VERTICAL rem 30 then
abort OTHER TASK;

elsif HELP xor TRUE then
goto INTERRUPTNAME;

end if;
end loop;

end;

case HELP is
when others =>

exit;
end case;

select
when HELP =>

exit;
when others =>

raise GOPS;
end select;

end loop LOOP NAME;
terminate;

end INTERRUPT;

-- The following should be flagged on the inner packages
-- as being nested too deeply!

package CHECKERONE is -

package CHECKER TWO is
package CHECKER_THREE is

procedure TRYAGAIN;
end CHECKER THREE;

end CHECKERTWO;
end CHECKER-ONE; 0

end CHECKER;

package body CHECKER is

package body CHECKER ONE is
package body CHECKER TWO is

package body CHECKER THREE is
procedure TRYAGAIN is
begin

null;
end TRY AGAIN;

end CHECKERTHREE;
end CHECKERTWO;

end CHECKERONE;

end CHECKER;

--The following procedure calls have been added to check for nesting 0
--levels.

10 i00

TEST PLAN (V. 1.0)

procedure STUFFER is

procedure STUFFERONE is

procedure STUFFERTWO is

pr-cedure STUFFERTHREE is

procedure STUFFERFOUR is
begin

TEXT IO.PUT LINE("In stufferfour! ');

end STUFFERFOUR;

begin
TEXT IO.PUT LINE("In stufferthree!");

end STUFFERTHREE;

begin
TEXT IO.PUTLINE("In stuffertwo!");

end STUFFERTWO;

begin
TEXT IO.PUTLINE("In stufferone!");

end STUFFERONE;

begin
TEXT IO.PUT LINE("In stuffer!");

end SlUFFER;

begin
if T = null then -- add this identifier and reference here

T := new NODE' (STRG,LENGTH,nullnuil,null);
T.REFERENCES := new REFS'(REFERENCELINENUMBER,null);

else
if T.STRG = STRG then -- new reference to old identifier
FOLLOW CHAIN := T.REFERENCES;
while FOLLOW CHAIN.NEXT /= null loop
FOLLOWCHAIN := FOLLOWCHAIN.NEXT;

--The following loops are added to test nesting levels of loops.
-- The outer loop should be flagged as nested too deep.
-- The inner loop should be flagged as needing a loop name.

while TESTER loop
while TESTER loop

while TESTER loop
for INDEX in 1..100 loop
while TESTER loop

while TESTER loop
-- should be flagged - nesting too deep

while TESTER loop
null;

end loop;
end loop;

11

TEST PLAN (V. 1.0) S

end loop;
end loop;
TESTER := FALSE;

end loop;
end loop;

end loop;
end loop;
TESTER := TRUE;
if FOLLOW CHAIN.REFNUM /= REFERENCELINENUMBER then
FOLLOW CHAIN.NEXT := new REFS'(REFERENCELINENUMBER,null);

end if;
else

if T.STRG > STRG then
INSERT(LENGTH, STRG, T.LEFT,REFERENCELINENUMBER);

else
INSERT(LENGTH, STRG, T.RIGHT,REFERENCELINENUMBER);

--The following if's are inserted for testing purposez.

if TESTER then
if TESTER then

if TESTER then
if TESTER then

null;
end if;
null;

end if;
null;

end if;
null;

end if;
end if;

end if;
end if;

end INSERT;
pz.agma MAIN;

-- TEST 4

------------------ PROLOGUE ---------------------------------------

-- Unit name next character
-- Author Richard D. Powers
-- Date created 7-29-83
-- Last update
-- ---- ---

-- Abstract This procedure returns the next character from the
--- input stream. If the character is a lower case

letter then it is converted to upper case.

---*

12

TEST PLAN (V. 1.0)

-- Inputs INPUT FILES - global file record
-- Outputs CH - next character from input stream
-- Procedures called GETLINE, NEXT CHARACTER
-- Exceptions If end of file is encountered then t'.- return
-- character is not changed, but current line will
-- have it's length set to -1.

-- Mnemonic
-- -- Name

-- Release date
------------------ Revision history ------------------------------------

-- DATE AUTHOR HISTORY

-------------------- END-PROLOGUE---

with TEXT 10;
procedure NEXT CHARACTER (CH : out CHARACTER) is
--pragma INCLUDE("GETLINE.ada.");
------------------------- PROLOGUE ---------------------------------------

-- Unit name get_line
-- Author Richard D. Powers
-- Date created 7-29-83
-- Last update 10-07-83

- - - - - - - - - - - - ------ ---- - - - - - - - - -- - - - - - - - -

-- Abstract This procedure gets the next line from the input
: stream.

-- Inputs INPUTFILE - global file record
-- Outputs LINE - next line from input stream
-- Procedures called : PUT HEADER, TEXT IO.END OF FILE,
-- TEXT IO.END OF LINE, TEXT IO.GET,
-- TEXT IO.INTEGER IO.PUT, TEXTIO.NEWLINE
-- TEXT-IO.PUT, TEXT IO.SKIPLINE

S-- Exceptions If end of file is encountered then line length is
-- set to -1.

-- Mnemonic
-- Name
-- Release date

------------------ Revision history- ------------------------------------

-- DATE AUTHOR HISTORY
-- 10-07-83 R. Powers Don't read a chaLacter at a time

-- ----------------- END-PROLOGUE --

13

TEST PLAN (V. 1.0) 0

procedure GET LINE(LINE : out LINERECORD) is
NEWLINE : STRING(1..MAXLINELENGTH); -- parameter for text io routines

LOOPFLAG, LOOPFLAGONE : BOOLEAN := true;

begin

--A loop added here for testing purposes.

for INDEX in l..i loop --long loop (no name) should be flagged.
LOOP TEST: --long loop with a name (no flag)
for INDEX in 1..i loop
if TEXT IO.END OF FILE(INPUTFILES(FILE LEVEL) .FILE) then

LINE.LENGTH : -1;
LINE.COLUMN 0;

else
if LINE NUMBER mod 40 = 0 then
TEXT IO.NEWLINE;

end if;
if LINE NUMBER mod 58 = 0 then
PUT HEADER;

end if; 0
TEXT IO.PUT('.');

LINE NUMBER := LINE NUMBER + 1;
TEXTIO.INTEGERIO.PUT(OUTPUT_FILE,LINENUMBER,5);

if LOOP FLAG then

exit;

end if;
if LOOP FLAGONE then
exit LOOPTEST;

end if;
while LOOP FLAG loop --Multiple exits should be flagged.

LOOP FLAG := false;
if LOOP FLAG then
exit LOOPTEST;

end if;
exit;

end loop;
exit LOOP_TEST;
TEXTIO.PUT(OUTPUTFILE,' ');
TEXTIO.GETLINE(INPUT FILES(FILELEVEL) .FILE,NEWLINE,LINE.LENGTH);
if LINE.LENGTH > 75 then -- only write first 75 characters
TEXTIO.PUT(OUTPUT_FILE,NEWLINE(I..74));

else
TEXTIO.PUT(OUTPUT_FILE,NEWLINE(..LINE.LENGTH));

end if;
for I in 1..LINE.LENGTH loop
LINE.LINE(I) := NEWLINE(I); --No exits in loop (no flags)

end loop;
LINE.COLUMN := 0;
TEXTIO.NEWLINE(OUTPUTFILE);

end if;
end loop LOOP TEST;

end loop;
cnd GET LINE;

14

TEST PLAN (V. 1.0)

begin
if INPUTFILES(FILE_ EVEL) .CURRENT LINE.COLUMN <

INPUT FILES(FILE_LEVEL) .CURRENTLINE.LENGTH then
INPUTFILES(FILELEVEL) .CURRENT LINE.COLUMN :=

INPUtFILES(FILE_LEVEL) .CURRENTLINE.COLUMN + 1;
CH := INPUT FILES(FILE_LEVELI.CURRENTLINE.

LINE(INPUT_FILES(FIL._J:VEL).CURRENTLINE.COLUMN);
elsif INPUTFILES(FILELEVEL) .CURRENT LINE.LENGTH > -1 then
GETLINE(INPUTFILES(FILE_LEVEL) .CURRENT_LINE);
NEXT CHARACTER(CH);

end if;
if (CH >= 'a') and (CH <= 'z') then
CH := CHARACTER'VAL(CHARACTER'POS(CH) - CHARACTER'POS('a')

CHARACTER'POS('A'));
end if;

end NEXTCHARACTER;

-- TEST 5

--This procedore has been altered in order to provide tests for the
--Style Checker program. Line length must be set by the parameters
--of the Checker with a maximum length of 80 characters
--------------------------- PROLOGUE ---------------------------------------

-- Unit name next identifier
-- Author Richard D. Powers
-- Date created 7-29-83

-- Last update

-- Abstract This procedure returns the next identifier in the
: input stream.

- --- - - -

-- Inputs INPUTFILES - global input file record

-- Outputs IDENTIFIER - next identifier from input stream
-- LENGTH - length of next identifier
-- REFERENCE LINE NUMBER - line number of this id

-- Procedures called : NEXTCHARACTER

-- Exceptions if no identifier is found (i.e. end of file) then
-- LENGTH is set to zero.

-- Mnemonic

-- Name
-- Release date
------------------ Revision history- ------------------------------------

-- DATE AUTHOR HISTORY

15

TEST PLAN (V. 1.0)

---------------- END-PROLOGUE--

wihCURRENT EXCEPTION;
w nh TEXT IC;
pocedufe NE.XT IDENTIF'IER(IDENTIFIER :out LINESTRING;

LENGTh :out LINEINDEX_-RANGE;
REFERENCELINENUMBER :out LINENIJMRANGE) is

--The following is added to test the flagging ofI representation specs.

type MEDIUM is range 0. .100;
BYTE :constant :=8;
__i MEDIUM'SIZE usr 2*BYTE;

type COLOR s (RED,BLUE,YELLOW) ;
ior COLOR use (RED => 5,BLUE => 2.0,YEILOW => 15);

GH-i CHARACTER; -- get a character at a time
:NEX : NTEGER range 0. .:,AXLINE LENG:H; -- index into identifier

--The following is a test for recognition of Pragmas

oragma LIST(OF7);
pragma LIST TON)
pragma OPTIMIZE(SPACE);
pragma PAGE;
begin

for I in 1. .IDLENGTH loop
IDENTIFIER(I) '

end loop;
CH :=''; -- force entry into first loop
WHILE not ((CH .>= 'A') and (OH <= 'Z'))

and (INPUT_-FILES ("ILELEVEL) .CURRENTLINE.LENGTH > -1) loop
NEXTCHLRAOTER(CH);
if OH = '-_' !hen -- look for comment indicator

INDEX :=INPUTFILES(FILE LEVEL) .CURRENTLINE.OOLUMN;
-- remember which column we are at

NEXT CHARACTER (OH);
if (OH = '-') and

(INPUT -FILES (FILELEVEL) .CURRENT U .CWLUMN = INDEX + 1)
then -- founQ, a comment
while INPUTFILES(FILELEVEL) .CURRENTLINE.COLUMN <

INPUTE'FLES (FILE_LEVEL) .CURRENTLINE.LENGTH loop0
NEXT CHARACTER (OH);

end loop;
OH - , '; -- force us to remain in loop

acnd if;

end if;

-- This i3 a long line to allow for the maximum parameter of the StyleChecker

16

TEST PLAN (V. 1.0)

if (CH >= 'C' and CH <= '9') then -- skip over literals
NEXTCHARACTER (CH);

while ((CH >= '0' and CH <= '9') or (CH = IEV) OR (CH ='))and

(INPUTFILES (FILE_LEVEL) .CURRENTLINE.COLUMN <

INPUTFILES (FILE_LEVEL) .CtRRENT_rINE.LENGTH)

loop

NEXT CHARACTER(CH);
if (CH = '#') then -- skip over based literals
NEXTCHARACTER(CH);
WHILE (CH /= '#') and

(INPUT_FILES (FILE_LEVEL) .CURRENT_-LINE.COLUMN <
INPUT_-FILES (FILE_LEVEL) .CURRENT LINE.LENGTH)

loop

NEXTCHARACTER(CH);
end loop;
NEXTCHARACTER(CH);

end if;

end loop;

end if;
if (CH '' then -- skip over string constants
NEXTCHARACTER(CH);
while (CH /= '"') and

(INPUT_-FILES (FILE_LEVEL) .CURRENT_-LINE.COLUMN <

INPUT_-FILES (FILE_LEVEL) .CURRENTLINE.LENGTH)

loop
NEXTCHARACTER(CH);

end loop;
end if;
if ((CR ' and

(INPUT_FILES(FILE_LEVEL) .CURRENT_LINE.COLUMN + 2 <=

INPUT_FILES(FILE_LEVEL) .CURRENTLINE.LENGTH)) and then
INPUTFILES (FILE_LEVEL) .CURRENTLINE.

LINE(INPUT_FILES(FILE_LEVEL) .CURRENTLINE.COLUMN + 2)
then
NEXT_ CHARACTER(CX); -- skip character constant
NEW TCHARACTER(CH); -- skip end of constant delimiter

end if;
end loop;
if INPUT_FILES(FILE_LEVEL) .CURRENTLINE.LENGTH - -1 then

LENGTH :- 0; -- end of file encountered
else

if INPUTFILES (FILE_LEVEL) .CURRENTLINE.COLUMN=
INPUTFILES(FILE_LEVEL) .CURRENTLINE.LENGTH

then -- last character on line
IDENTIFIER(l) :=CH;
LENGTH :=1;
REFERENCELINENUMBER :=LINENUMBER;

else
REFERENCE_-LINENUMBER :LINE-NUMBER;

INDEX :- 0;
while (INPUT_FILES (FILE_LEVEL) .CURRENT_-LINE.COLUNN <

INPUT_-FILES(FILE_LEVEL) .CURRENTLINE.LENGTH)
and (((CH >- 'A') and (CH <= 'Z')) or (CH =)or

((CH >- '0') and (CH <- '9'))) loop
INDEX :=INDEX + 1;
IDENTIFIER(INDEX) :=CH;
NEXT CHARACT7R(CH);

17

TEST PLAN (V. 1.0)

if (INPUTFILES(FILELEVEL) .CURRENT LINE.COLUMN =
INPUTFILES(FILELEVEL) .CURRENTLINE.LENCTH)
and (((CH >= 'A') and (CH <= 'Z')) OR
((CH >= '0') and (CH <= '9')) or (CH = '_')) then
INDEX := INDEX + 1;
IDENTIFIER(INDEX) := CH;

end if;
end loop;
if INPUTFILES(FILE LEVEL) .CURRENTLINE.COLUMN /=

INPUT FILES (FILELEVEL) .CURRENTLINE.LENGTH
then -
INPUT FILES(FILELEVEL) .CURRENT LINE.COLUMN

INPUTFILES(FILELEVEL).CURRENTLINE.COLUMN - 1;
end if;
if INDEX > ID LENGTH then
LENGTH := ID LENGTH;

else
LENGTH INDEX;

end if;
end if;

end if;

--A call to a proscribed package

TEXTIO.PUT(CURRENTEXCEPTION.NAME);

en NEXTIDENTIFIER;

pragma MAIN;

-- T E S T 6

------------------- PROLOGUE ---------------------------------------

-- Unit name push file
-- Author Richard D. Powers
-- Date created 7-29-83

-- Last update 1-31-84

---- _* -0

-- Abstract This procedure handles the pragma include, opening
----- :the include file and pointing current input to it.

- •

-- Inputs INPUT_FTLES - global file record

-- Outputs INPUTFILES - global file record
-- Procedures called : NEXTCHARACTER, FILE IO.OPENINPUTFILE,
-- TEXTIO.NEWLINE, TEXTIO.PUT

-- Exceptions

18

TEST PLAN (V. 1.0)

-- Mnemonic
-- Nae
-- Release date

------------------ Revision history- ------------------------------------

-- DATE AUTHOR HISTORY
-- 1-31-84 R. Powers Open routines moved to own package

--------------------- END-PROLOGUE---

procedure PUSH FILE is
CH : CHARACTER; -- read a character at a time
FILE NAME : STRI.10(1..MAX LINELENGTH); -- name of new input file
FILENAMELENGTH : INTEGER range 0..MAX LINELENGTH := 0;

-- length of name
OPENED : BOOLEAN; -- parameter to open inputfile

begin
for I in 1..FILE NAME'LAST loop
FILE NAME(I) '

end loop;
NEXT CHARACTER(CH);
WHILE CH = ' I loop

NEXT CHARACTER(CH);
end loop;
if CH /= '(' then
TEXT IO.PUT("ERROR IN PARSING PRAGMA INCLUDE - MISSING '('");
TEXT IO.NEWLINE;

else
NEXT CHARACTER(CH);
while CH = ' ' loop
NEXT CHARACTER(CH);

end loop;
if (CH /= '"') then

TEXT IO.PUT("ERROR IN PARSING PRAGMA INCLUDE - MISSING '""'");
TEXT IO.NEWLINE;

else
NEXT CHARACTER(CH);
while (CH /= '"') and

(INPUTFILES(FILELEVEL) .CURRENTLINE.COLUMN <
INPUT FILES (FILELEVEL) .CURRENTLINE.LENGTH)

loop
FILE NAME LENGTH := FILENAMELENGTH + 1;
FILENAME(FILE NAME LENGTH) := CH;
NEXT CHARACTER(CH);

end loop;
-- include pragma appends file type of TXT if a period is not at end
-- of file name, but open fails if we put the period on there!
if FILENAME(FILENAMELENGTH) - '' then
FILE NAMELENGTH := FILENAMELENGTH - 1;

end if;
FILEIO.OPENINPUTFILE(INPUTFILES (FILELEVEL + 1) .FILE,

OPENED, FILENAME, FILENAMELENGTH);
if not OPENED then

TEXT IO.PUT("ERROR IN OPENING INCLUDE FILE");
TEXTIO.NEWLINE;

else
FILE LEVEL := FILELEVEL + 1;

19

TEST PLAN (V. 1.0)

INPUTFILES(FILELEVEL) .CURRENTLINE.LENGTH 0;
INPUTFILES(FILELEVEL).CURRENTLINE.COLUMN 0;

end if;
end if;

end if;
end PUSHFILE;

-- TEST 7

-- Ada Style Checker Test program

with TEXTIO; usp TEXTIC;
with SYSTEM;
with UNCHECKED DEALLOCATION;
PRAGMA OPTIMIZE;
pragma STUPIDPRAGMA;

PROcedure ADATEST is
type X is record
duml integer;
DUM2 positive;

end record;

begIn
PUT("Test Program"); -- try some
NEW LINE; -- trailing

X := CALL; -- lkjkljlk
x := "Line too little indented!"; -- kjljkl

LONGVARIABLENAMEWITHOUTUNDERCORES "Line too far indented.";
END ADATEST;

20

DOCUMENTED ADA STYLE CHECKER
(DASC) PROJECT

CONFIGURATION MANAGEMENT PLAN

r

CM Plan Written By
03/15/88 Leslie Vanator
Version 1.0

I

I

CONFIGURATION MANAGEMENT PLAN (V. 1.0)

Table of Contents

1. Introduction... 1
1.1. Scope.. 1
1.2. Acronyms ... 1
1.3. References.. 1

2. Configuration Management.. 1
2.1. Organization.. 1
2.2. Responsibilities... 1

2.2.1. CCB ... 1.
2.2.2. CM Manager .. 2
2.2.3. Document Specialist ..-
2.2.4. Principal Architect ... 2

2.3. OMP Implementation ... 2
2.3.1. CCB... 2
2.3.2. Release 1.0 2
2.3.3. Test And Support Tools .. 2
2.3.4. Policy Implementaticn... 3

2.4. Applicable Policies, Directives, and Procedures...................................... 3
2.4.1. Release Policy .. 3

2.4.1.1. Document Releases.. 3
2.4.1.2. Code Releases.. 3

2.4.2. Access Policies.. 3
2.4.2.1. Documentation ... 3
2.4.2.2. Source Code... 4
2.4.2.3. Object Files ... 4
2.4.2.4. Executable Image .. 4

2.4.3. Correspondence .. 4.

3. Configuration Management Activities. ... 4
3.1. Configuration Identification.. 4

3.1.1. Configuration Items ... 4.
3.1.2. Configuration Locations ... 5
3.1.3. Current Release Repository ... 5
3.1.4. Backup and History Repository~.................................5
3.1.5. Change Indication .. 5

3.1.5.1. Documentation ... 5
3.1.5.2. Code ... 5

3.2. Configuration Control... 5
3.2.1. Change Control Documents ... 5
3.2.2. Change Request Processing... 6
3.2.3. Discrepancy Report Processing... 6
3.2.4. CCB Activities............................. :****""'***''"*****"**'*******... 6
3.2.5. Change To Code Repositories ... 6
3.2.6. Code Protection... 7

3.3. Configuration Status Accounting.. 7
3.4. Audits and Reviews.. 7

4. Records Collection and Retention... 7

A. Revision History... 7

* CONFIGURATION MANAGEMENT PLAN (V. 1.0)

Appendix 1. Structure and Contents of Directory USER$DISK-[C474Al4] 9

Appendix 2. Structure and Contents of Directory USER$DISK:[C474A12] 10

Attachment 1. DASC Change Request Form ... 11

Attachment 2. DASC Discrepancy Report Form.. 12

CONFIGURATION MANAGEMENT PLAN (V. 1.0)

1. Introduction

The purpose of this plan is to define all policies related to the configuration management of the
Documented Ada Style Checker (DASC) Project. This plan is structured according to the DASC
Documentation Standards and Guidelines.

1.1. Scope

This plan provides the methods for managing configuration items during the modification and testing of
the Style Checker. These items are listed in section 3.1.1. Included are provisions for configuration
identification, control, and status accounting.

1.2. Acronyms

The following acronyms are referred to in this plan:

CCB Change Control Board
CM Configuration Management
CMP Configuration Management Plan
CR Change Request
DR Discrepancy Report
DASC Documented Ada Style Checker
QA Quality Assurance

1.3. References

The following documents are referred to in this plan:

Coding Standards
* Documentation Standards and Guidelines

The above documents are part of the DASC Project and can be obtained from the DASC Project group.

2. Configuration Management

Configuration Management organization, responsibilities, plan implementation, and policies are outlined
in this section.

2.1. Organization

The Configuration Management (CM) Manager will be responsible for the implementation of this plan
where it applies to the Style Checker code, and to any other files necessary for execution of the Style
Checker code. The Document Specialist will be responsible for the implementation of this plan where it
applies to the Style Checker documentation. The CM Manager and the Document Specialist must report
to the Change Control Board (CCB).

The CCB consists of the Principal Architect, the Project Administrator, the Document Specialist, and the

CM Manager.

2.2. Responsibilities

The CCB, CM Manager, Document Specialist and Principal Architect have specific responsibilities to be
carried out in accordance with this plan.

2.2.1. CCB

The CCB has the following responsibilities.

CONFIGURATION MANAGEMENT PLAN (V. 1.0) 0

" reviewing Change Requests (CR)s and Discrepancy Reports (DR)s
" approving or rejecting proposed changes
* providing for the proposal of alternative changes when necessary
" maintaining separate files of Waived, Repaired, Pending, and new Change Requests and

Discrepancy Reports

2.2.2. CM Manager

The CM Manager has the following CM responsibilities

" writing the Configuration Management Plan
* creating forms necessary for CM activities
" maintaining a central repository for the current release of the configuration items 8 through 12

of section 3. 1. 1
" preparing releases of configuration items 8 through 12 of section 3. 1 1
" notifying team members of new releases and how to access them
" tracking and recording approved changes
" maintaining a record of CM activities
" participating in CCB meetings

2.2.3. Document Specialist

The Document Specialist has the following CM responsibilities S

* maintaining current releases of configuration items 1 through of section 3. 1. 1
" making approved changes to baselined documents
• making docunent copies available to team members
- maintaining each document's revision history (see Documentation Standards and Guidelines,

Revision History)
participating in CCB meetings

2.2.4. Principal Architect

The Principal Architect has the following CM responsibilities.

" calling and participating in CCB meetings
* making change control decisions
* publishing a weekly summary of all actions taken

2.3. CMP Implementation

This section outlines the CMP implementation schedule.

2.3.1. CCB

The Change Control Board has already been established and will hold meetings as Change Requests and
Discrepancy reports are received.

2.3.2. Release 1.0 0

Release 1.0 of configuration items 1-7 of section 3.1.1 will be made by the Document Specialist after each
item passes a formal review. Each baselined document will reside on floppy disk kept by the Document
Specialist. The first release of the Style Checker code has been made and resides in the VAX directory
[.C474A14]. Every release made will reside in this location while it is the current release. Future
releases will be made by the CM Manager when they are warranted.

2.3.3. Test And Support Tools

2

* CONFIGURATION MANAGEMENT PLAN (V. 1.0)

Test and support tools are being developed independently of this plan by the team members who will be
using them.

* Ada Program Library Manager (ACS): used by the CM Manager
* Manpower (COCOMO estimator), Ada Statement Counter: used by the Project Administrator
* McCabe's Complexity Measure: used by the QA Manager
* A-Test tool: used by the Project Tester
* Excelerator, Compilation Order tool: used by the Project Designer
* Ada debugger, Pretty Printer (formatter): used by the Project Implementers

2.3.4. Policy Implementation

The policies outlined in this plan will be enforced after the CMP has passed formal review. This includes
all policies and procedures of section 2.4 and all activities outlined in section 3.0. The tentative date of
this review is Tuesday, March 1, 1988.

2.4. Applicable Policies, Directives, and Procedures

This section outlines the policies and procedures that will be followed when making releases of DASC
configuration items or when accessing these items.

2.4.1. Release Policy

Release policies for configuration items 1 through 7 of section 3.1.1 will be enforced by the Document
Specialist. Release policies for items 8 through 12 of 3. 1.1. will be enforced by the CM Manager.

2.4.1.1. Document Releases

All DASC Project Documents (items 1 through 7 of section 3.1.1) will be baselined by the Document
Specialist as each document passes formal review. Once these documents have been baselined (release
1.0), they are under change control and cannot be changed unless an approved Change Request or
Discrepancy Report is issued by the CCB. Each document will be released periodically as changes are
approved and revisions are made. The Document Specialist is responsible for each release, and will
provide each DASC Project member with a copy of each new release.

* 2.4.1.2. Code Releases

All Style Checker files including source code, object code (residing in an ACS library), and executable
image will be released as a unit by the CM Manager. Once released, these files are under change control
and cannot be changed unless an approved Change Request or Discrepancy Report is issued by the CCB.

Releases will be made periodically as modified code is received and checked in by the CM Manager.
0 Frequency of releases will depend on the nature and number of the changes made to the source code, and

will be determined by t0 CM Manager. All DASC Project team members will be informed of a new
release by electronic mail.

2.4.2. Access Policies

* Any configuration item under control of this plan must be accessed through the CM Manager or the
Document Specialist.

2.4.2.1. Documentation

Current releases of DASC Project Documentation can be accessed through the Document Specialist.
Modification of a document must be made to a copy of the document. Documents which have been

0 modified must be sent to the Document Specialist through electronic mail. The Document Specialist will
then check the modified document against approved CRs or DRs for completeness and correctness of the

3

CONFIGURATION MANAGEMENT PLAN (V. 1.0)

modification. The appropriate CR or DR must be signed by the Document Specialist before the CR or DR
is considered closed. A new release may then be prepared.

2.4.2.2. Source Code

Source code files must be "checked out" and "checked in" following the procedures below. The CM
Manager will maintain a Check Out Log that contains the following: the release number (the release
being modified), the name of the source file, the name of the Ada unit affected, the corresponding Change
Request or Discrepancy Report number, the individual's name, the "check out" date, and the "check in"
date.

Check Out: Approval must be given by the CM Manager before copying a source code file. If the copy is
being made for modification purposes, an entry will be made in the Check Out Log by the CM Manager.

Check In: Source code that has been modified must be thoroughly unit tested before being returned to
the central repository. The CM Manager must be notified when testing is complete. The CM Manager
will then review the CR or DR corresponding to the modification that has been made, and see that the
request numbers match the numbers recorded in the source file. The CR or DR will then be signed by the
CM Manager and the source file will be mailed to the CM Manager. The check in date wi!1 then be
entered in the Check Out Log.

2.4.2.3. Object Files

Object files may be copied by the Project tester only with the CM Manager's approval and only for the
purposes of system testing. The object files will be maintained in an ACS library.

2.4.2.4. Executable Image

The system's executable image may not be copied, but may be executed at any time.

2.4.3. Correspondence

All correspondence to and from the CM Manager and the Document Specialist should be through
electronic mail. This correspondence can then be kept in a binder as a log of CM activities.

3. Configuration Management Activities
CM activities include identification and maintenance of configuration items, change control, and status

accounting.

3.1. Configuration Identification

During modification and testing of the Style Checker, configuration items will be maintained by the
Document Specialist and the CM Manager.

3.1.1. Configuration Items

The planned DASC Project configuration items are as follows:

1. Requirements Document
2. Configuration Management Plan
3. Quality Assurance Plan
4. Coding Standards
5. Design Document
6. Test Plans
7. User Manual
8. Source Code Files
9. Object Code Files

4

CONFIGURATION MANAGEMENT PLAN (V. 1.0)

10. Executable Image
11. Help Library File
12. Command File

3.1.2. Configuration Locations

Configuration items 1 through 7 of section 3.1.1 will be maintained by the Document Specialist on floppy
disk. Two repositories will be maintained by the CM Manager for configuration items 8 through 12 of
section 3.1.1. One repository will be for the current release, the other will be a backup and histories
repository.

3.1.3. Current Release Repository

The current release of the Style Checker will reside in the VAX directory [C474A141. This subdirectory
will include all source code, object code, the executable image of the current release, and all modifications
to the source code. For the complete stracture and contents of this subdirectory, see Appendix 1.

3.1.4. Backup and History Repository

A backup and history repository will reside in the VAX directory [C474A12]. It will consist of a backup
copy of the current release's ACS library (includes source and object code) and executable image. This
subdirectory will also contain the ACS library of the previous release, and the executable image of that
release. For the complete structure and contents of this subdirectory, see Appendix 2. All other
historical releases (source code only) will be down loaded onto floppy disk and kept by the CM Manager.

3.1.5. Change Indication

All changes to DASC configuration items must be indicated by the following methods.

3.1.5.1. Documentation

All documentation is currently identified by the titles listed in section 3.1.1 (items 1 through 7). Changes
to these documents will be indicated by a change in version number, and will be noted in the document's
revision history (See Documentation Standards and Guidelines).

3.1.5.2. Code

All source code is currently identified by Filename.Ada and is part of release 1.0. As code is modified,
files must be renamed as follows:

filename_n_m.ada
where filename = previous filename

n = release being modified
m = number of change being made to this file, this release

For example, ExampleFile_1_2.ada would indicate that Release 1.0 of ExampleFile is undergoing its
second modification. Internal changes to files will be recorded in the heading documentation. This will
include the date the change is made, and the Change Request or Discrepancy Report number. Changes
will be flagged in the code according to methods outlined in the Coding Standards document.

3.2. Configuration Control

This section outlines the process of evaluating, and approving or disapproving changes to any DASC
Project configuration item. This process begins with a release of a configuration item.

3.2.1. Change Control Documents

There are two documents that will be used to process changes.

5

CONFIGURATION MANAGEMENT PLAN (V. 1.0)

1. Change Request - used to request a change in the current release that is an enhancement to the
system.

2. Discrepancy Report - used to request a change in the current release because it does not meet
requirements.

3.2.2. Change Request Processing

The following steps will be used when processing a Change Request.

1. a Change R- 4uest Form will be prepared
2. the Change Request Form will be delivered to any member of the CCB or to the Project Manager
3. the form will be numbered for identification and tracking purposes
4. the Principal Architect will call a CCB meeting
5. the CCB will evaluate the request and either

" approve the change and mark as Pending
" reject the change and mark as Waived
* suggest improvements to the change - in this case the request must be Repaired and the

change must be re-evaluated
6. the change will be carried out by a DASC Project member
7. the CM Manager or Document Specialist must sign Pending forms after changes are complete

3.2.3. Discrepancy Report Processing

The following steps will be used when processing a Discrepancy Report.

1. a Discrepancy Report will be prepared
2. the Discrepancy lPeport will be delivered to any member of the CCB or to the Project Manager
3 the form will be numbered for identification and tracking purposes
4. the Principal Architect will call a CCB meeting
5. the CCB will evaluate the report and either

* approve the report and the correction and mark it as Pending
* reject the report and mark it as Waived
" assign a DASC Project member to analyze the discrepancy and prepare a correction - in this

case the report must be prepared and the correction must be re-evaluated
6. the correction will be carried out by a DASC Project member
7. the CM Manager or Document Specialist must sign pending reports after corrections are

complete

3.2.4. CCB Activities

The Principal Architect will call and conduct meetings of the CCB for the purpose of evaluating all
proposed changes to releases of the DASC Project configuration items, These items are listed in section
3.1.1. Meeting frequency will be dictated by submission of Discrepancy Reports or Change Requests up
to a maximum of two meetings per week.

At each CCB meeting, Pending Change Requests (CR)s or Discrepancy Reports (DR)s are handled first,
then each new CR and DR is considered. Each CR or DR is either waived, approved, or repaired Waived
items are archived and approved items are filed as pending to track the required change. Repaired CRs
or DRs must be reconsidered by the CCB in the same manner as a new CR or DR. Each CCB meeting
must have a quorum of three members. Primary responsibility for decisions rests with the Principal
Architect. If the Principal Architect is absent, the responsibility rests with the Project Administrator.

3.2.5. Change To Code Repositories

Code repositories will be changed by the CM Manager when a new release is warranted. The following
steps will be used to update code configurations.

1. the lowest numbered release (the release residing in [C474A12.History]) is stored on floppy

CONFIGURATION MANAGEMEN1Y PLAN (V. 1.0)

2. the current backup ([C474A12.Backup]) is moved to the [C474A12.History] subdirectory
3. the Style Checker is re-ccnfigured with the modified source code in [C474A14.StyleChanges]
4. the modified configuration is moved to the [C474A14.Baseline] subdirectory

0 5. a copy of the library and executable image of the new release (now in [C474A14.Baselinel) is
made in the [C474A12.Backup] subdirectory

3.2.6. Code Protection

Certain privileges to the code repositories will bc granted to DASC Project team members. These
privileges include Read for source code files, and Execute for the executable image. Write privilege will
never be given. A complete summary of directory privileges can be found in Appendices 1 and 2.

3.3. Configuration Status Accounting

The following reports will be maintained.

Check Out Log: This online file ([C474Ai4]CheckOut.Log) will be kept for tracking
modifications to source code files. A new log will be started for
each new release.

Change Request Forms: All Change Request Forms will be retained by the CCB, and
organized by release number.

* Discrepancy Reports: All Discrepancy Reports will be retained by the CCB,and
organized by release number.

Correspondence: Electronic mail will be retained in hard copy form by the CM
Manager.

Version History: This online file ([C474A14.BaselinelVersion.Doc) will be
maintained by the CM Manager, and will contain information
about the current baselined code. This information includes
version number, date baselined, and any concerns or problems
associated with the version.

3.4. Audits and Reviews

Audits and reviews of the DASC project will be conducted by the Quality Assurance (QA) Manager.

4. Records Collection and Retention

All documentation listed in section 3.3 will be retained for configuration items 8 through 12 of section
0 3 1.1. When a new release is made, the Check Out Log and Version History will be hard copied and kept

in a binder with the Change Requests, Discrepancy Reports, and corresponL .nce for that release. Each
release of code will have its own set of thesc documents.

Change Requests anl Discrepancy Reports will be retained for each release of each DASC Project
document (items 1 through 7 of 3.1.1).

0 All code releases not in code repositories will be stored on floppy disk. All document releases will also be
stored on floppy. These releases along with document binders will be retained until the projec, is
completed.

A. Revision History

* Version 0.1 02/09/88 Leslie Vanator

Revision 0.2 02/25/88 Leslie Vanator

7

CONFIGURATION MANAGEMENT PLAN (V. 1.0)

Added Revision History and Appendices.
Added all material pertaining to document change control and all new
information concerning the CCB.

Baselined 03/13/88 Bill Davis

8

CONFIGURATION MANAGEMENT PLAN (V. 1.0)

Appendix 1. Structure and Contents of Directory USER$DISK:[C474A14]

[C474,A14]

[.TLSUCJ[.ADALIB] [.EXEC] [.DOCUMENS

Directory Contents: USER$DISK:[C474A14]

SUBDIRECTORY CONTENTS ACCESS
C474A14 CHECK OUT LOG NONE

(CHECKOUT.LOG)
STYLECHANGES SOURCE CODE CHANGES READ
BASELINE CURRENT RELEASE INFORMATION READ

(VERSION.DOC)
STYLESOURCE CURRENT RELEASE SOURCE CODE READ
ADALIB CURRENT RELEASE ACS LIBRARY NONE (READ

with permission)
EXEC CURRENT EXECUTABLE IMAGE EXECUTE

HELP FILE (HELP.INI) NONE
COMMAND FILE (STYLE.COM) NONE

DOCUMENTS PORTING INFORMATION NONE
(PORT.DOC)

9

CONFIGURATION MANAGEMENT PLAN (V. 1.0)

Appendix 2. Structure and Contents of Directory USER$DISK:[C474A12]

[.EXEC] [.ADALIB] [.EXEC] [.ADALIB]

Directory Contents: USER$DISK[C474A12]

SUBDIRECTORY CONTENTS ACCESS
C474A12 CM MANAGER WORK FILES NONE

BACKUP RELEASE INFORMATION NONE
(VERSION.DOC)

EXEC BACKUP EXECUTABLE IMAGE NONE
HELP FILE (HELP.INI) NONE
COMMAND FILE (STYLE.COM) NONE

ADALIB BACKUP ACS LIBRARY NONE
HISTORY RELEASE INFORMATION NONE

(VERSION.DOC)
EXEC PREVIOUS EXECUTABLE IMAGE NONE

HELP FILE (HELP.INI) NONE
COMMAND FILE (STYLE.COM) NONE

ADALIB PREVIOUS ACS LIBRARY NONE

0

10

DASC CHANGE REQUEST Change Request No.:
Release No.:

Originator: Position:
EMail Address: Date:

Change Type
New Feature Cost Reduction _ Other (describe)

Correction Description:

Resource Estimation (Hrs) Documentation Affected:

Modification
Testing Source File(s) Affected:
OtherTOTAL

CCB Decision
Approved As Is Waived - Approved With Modification

Reasons Waived/Description of Modification:

CCB Signatures: Date:

Request Closed Date:

Configuration Manager/Document Specialist Signature:

I

DASC DISCREPANCY REPORT Report No.:
Release No.:

Originator: Position:
EMail Address: Date:

Problem Description/Requirement Not Met:

Correction Description:

Resource Estimation (Hrs) Documentation Affected:

Modification
Testing Source File(s) Affected:
Other _

TOTAL

CCB Decision
Approved As Is Waived - Approved For Analysis __

Reasons Waived:

40CCB Signatures: Date:

Request Closed Date: 0

Configuration Manager/Document Specialist Signature:

DOCUMENTED ADA STYLE CHECKER
(DASC) PROJECT

USER MANUAL

User Manual Written By
04/30/88 Bill Davis
Version 1.0

USER MANUAL (V. 1.0)

Table of Contents

1. Introduction .. 1

2. Purpose ... 1

3. Operation ... 1
3.1. Run Style Checker .. 2
3.2. List/View Test Files .. 4
3.3. List/View Flaw Reports ... 8
3.4. List/View Style Reports .. 11
3.5. Run Help Utility .. 14
3.6. Exit .. 17

A. Revision History ... 17

USER MANUAL (V. 1.0)

1. Introduction

This User Manual is designed to assist the user with the operation of the Documented Ada Style Checker
(DASC) DASC is implemented on a Digital Equipment Corporation (DEC), Virtual Address eXtended
(VAX) architecture system. This document will be useful ONLY if the user is using this DEC system.
The Style Checker itself is not system-dependent. However, the user interface, which this manual treats,
is completely dependent upon the DEC Command Language (DCL). Additionally, ALL references to the
printing of files are unique to the facilities at Indiana University - Purdue University at Fort Wayne
(iPFW).

2. Purpose

Objectively speaking, what is program style and how can it be measured? There are tools to measure
program efficiency, tools to measure program complexity, and tools to measure program cost. There is a
need for a tool that can measure program style. Program style has been defined as a "followed
convention with respect to punctuation, capitalization, and typographic arrangement and display."

*DASC is a software tool that takes a syntactically correct Ada program, checks that program against an
established convention, and makes a quantitative and objective evaluation of that input program. DASC
is simple to use, has a built-in help facility, and will give the user output that is easily understood.

3. Operation

This Operation Section of the User Manual is subtitled according to the choices displayed by the DASC
Main Menu Screen.

(1) Run Style Checker
(2) List/View Test Files
(3) List/View Flaw Reports
(4) List/View Style Reports

* (5) Run Help Utility
(6) Exit

Each option will be described in detail. In addition, a specific input file (TEST1.ADA) with the
corresponding output files (TEST1.FLW and TEST1.STY) is included.

The Style Checker is invoked at the VAX system prompt ($) with the following entry.

$ @ DASC <RETURN>

For the sake of consistency, this document will display ALL sample user input in UPPERcase. However,
DCL is not case-sensitive to any user input. Therefore, the following entries are equivalent:

0 $ @ Dasc <RETURN>
$ @ DAsc <RETURN>
$ @ daSC <RETURN>

The result of any of the above entries is the following DASC Introductory Screen:

DOCUMENTED ADA STYLE CHECKER (DASC) INTERFACE

This command file may be used as an interface for the Style Checker. It
allows the user to (1) Run the Style Checker, (2) List and view available test
files, (3) List and view flaw reports that have been generated by the Style
Checker, (4) List and view style reports that have been generated by the Style
Checker, (5) Run the help utility.You may enter your own file name at anytime
provided the input file is syntactically correct Ada code.

v1

USER MANUAL (V. 1.0)

To run multiple test files, create a file named "Inputfile.Ada".
Inputfile.Ada must contain one or more file names with the extension "Ada".
These files may be test files or your own Ada files. Each file name must be
entered on a separate line. After submitting "Inputfile.Ada" to the Style
Checker, the flaw report ".FLW " and style report".STY" are created. These
files will have the prefix of the first file name in "Inputfile.dat".

WARNING: There are some defaults in the interface selection. From the main
menu, any key not defined with a selection number will cause the selection (1)
Run Style Checker to be executed. From any yes/no inquiry, (y/n) responses
other than "Y" or "y" will result in a no response.

<Press RETURN to continue>

Press the <RETURN> key to display the DASC Main Menu Screen:

DASC MENU 0

1) Run Style Checker

2) List/View Test Files

3) List/View Flaw Reports

4) List/View Style Reports

5) Run Help Utility

6) Exit

Select option 1 through 6

3.1. Run Style Checker

To run the Style Checker (option 1), the user must choose the following:

1 <RETURN> or
<RETURN>

The second method (as stated in the DASC Introductory Screen) chooses the default from the DASC Main
Menu Screen. EITHER entry will display something similar to the following screen:

The following are test files that may be evaluated by the StyleChecker.
You may choose a test file(s) or enter your own file(s).

USER$DISC: (XNNNXNJ

TESTI.ADA;l TESTIA.ADA;I TESTIB.ADA;l
TEST2.ADA;l TEST3A.ADA;l TEST4.ADA;l
TEST5.ADA;I TEST6.ADA;I TEST7.ADA;l

Total of 9 files.
Enter filename with '.ADA' extension :

A user input of

2

* USER MANUAL (V. 1.0)

TESTI. ADA <RETURN>

would result in the following screen:
S

Do you wish to enter another file name? (y/n) :

NOTE: Multiple files could be entered at this time until the user had entered all the input files to be
Style Checked. A user input of Y would prompt the user for another file name. However, all the flaw
reports and all the style reports would be concatenated into one flaw report and one style report
respectively. This method is NOT suggested if the user would like to view the reports separately.

A user input of

N <RETURN>

would result in the following screen:
S

The StyleChecker is now working. Please be patient.

<<while the StyleChecker is working, the following message has not yet
appeared>>

The flaws report is contained in TEST1.FLW
Do you wish to view the flaw file? (y/n) : _

At this point, the output from the DASC run on input file TEST1.ADA could be viewed or printed.
However, these options are essentially the same as options 3 and 4 from the main menu and will be
discussed in Sections 3.3 and 3.4 respectively.

A user input of

N <RETURN>

to the prompts

Do you wish to view the flaw file? (y/n): _

and

Do you wish to view the style file? (y/n): _

would result in the following additional prompt:

Would you like to have a hardcopy of this file? (y/n)

A user input of

N <RETURN>

to these prompts would result in the return to the DASC Main Menu Screen.

3.2. List/View Test Files

To list or view the test input files (option 2), the user must choose the following from the DASC Main
Menu Screen:

2 <RETURN>

3

USER MANUAL (V. 1.0)

This entry will display something similar to the following screen:

The following are test file(s) that may be used as test data for the
StyleChecker.

Directory USER$DISC: (XNNNXN]

TEST1 .ADA; 1 TESTIA.ADA; 1 TESTIB.ADA; 1
TEST2.ADA;1 TEST3A.ADA;1 TEST4.ADA;1
TEST5.ADA;1 TEST6.ADA;1 TEST7.ADA;1

Total of 9 files.
Do you wish to view a file? (y/n) : _

A user input of

Y <RETURN>

would result in the additional prompt:

Enter file name with '.ADA' extension -- >

The user input of

TEST1.ADA <RETURN>

would result in the following output to the screen.

NOTE: Any screen output longer than one page will require pressing the <RETURN> key. This
enhancement has been added to prevent information from scrolling past the user before he can view that
output.

-- TEST 1

-- This module is used to test the Coding Standards Checker for ADA - The
-- tests that are to be applied to the module are Test Al indices 1 thru 7
-- and 14. Various additions have been added to a module originally named
-- Menu.ada authored by Jerry Baskette. Changes were made January 30, 1985
-- by James Rea.

-- Additions and changes have been commented throughout the module. These
-- comments relate the tests to the code.

with CURRENT EXCEPTION;
separate (HELPUTILITY)

-- The reserved word 'procedure' is in upper case
-- This should be flagged as improper case - Test Al index 1

PROCEDURE PRINTTOPICMENU (NODE: in HELPLINK) is

LINE COUNT: TEXT RANGE := 0; -- number of lines to be output
TOTALNUMBER OF TOPICS: NATURAL :- 0;

4

USER MANUAL (V. 1.0)

-- The name NUMTOPICS IN COLUMNONE in the wrong case

-- This should be flagged as improper case - Test Al index 2

num TOPICS IN COLUMN ONE: POSITIVE := 1;
TOPICS IN COLUMNTWO: BOOLEAN := FALSE;
OUTPUTLINE: HELPINFOTEXTLINE;
OUTPUT BUFFER: SAVEDTEXT; -- buffer of OUTPUTLINES Lo be output
RIGHTCOLUMNSTART: INTEGER := (MAXLINELENGTH/2) + 2;

-- The name EVEN should flag the short word (length 4)

EVEN: BOOLEAN := FALSE;

-- The name 'EVENS' should not flag the short name defn. Test Al index 6

EVENS: POSITIVE := 1;

--The names 'I,J,K' should not be flagged. Test Al index 7

I: POSITIVE;
I: POSITIVE;
K: POSITIVE;
TESTFLAG: BOOLEAN;
TESTFLAG: BOOLEAN;

--The name 'TSTFLG' should be flagged as an abbreviation
--Test Al index 14

TSTFLG: BOOLEAN;
TESTFLAG: BOOLEAN;
TESTFLAGS: BOOLEAN; --should be flagged for indentation
TESTFLAGS: BOOLEAN; --should be flagged for indentation

CURRENT NODE: HELPLINK := null;--flag for indentation
COLONE NODE: HELPLINK : null;--flag for indentation

COL TWO NODE: HELPLINK := null;--flag for indentation

begin

-- Indentation should be checked per Test A2

CURRENT NODE := NODE.SUBTOPICS;
-- count the number of subtopics for this node

while CURRENT NODE /= null loop

5

USER MANUAL (V. 1.0)

TOTAL NUMBER OF TOPIC- := TOTALNUMBEROFTOPICS + 1;
CURRENT NODE:= CURRENTNODE.NEXTTOPIC;

end loop;

-- :f there is more than one topic, then split the topics into two columns
-- Column one will have the first half and column two the second half.
-- If there aro an odd number of topics, column one will have the odd number

--The following 'if statements should be flagged as two statements
--on one line. Test A2 index 1

if TOTAL NUMBER OF TOPICS /= 0 then if TOTALNUMBEROFTOPICS >= 2 then
TOPICS IN COLUMN TWO := TRUE;
NUMTOPICSINCOLUMNONE := TOTALNUMBEROFTOPICS / 2;

-- More than one topic, split the number
--See if odd number. If so, increment the topic count so odd goes in 1st col.

if TOTAL NUMBER OF TOPICS /= (TOTALNUMBER OF TOPICS/2) * 2 then
NUMTOPICSINCOLUMNONE := NUMTOPICS _INCOLUMNONE + 1;

else

--A second test of multiple statements on one line.

EVEN :- TRUE; end if; end if; --three statements on this line!

-- set the beginning node for each column

COL ONE NODE := NODE.SUBTOPICS;
CURRENTNODE := NODE.SUBTOPICS;

--The following 'for' statement should flag improper indentation
--Test A2 index 3

for I in 1..NUM TOPICS IN COLUMN ONE loop
COLTWONODE :=-CURRENT_NODE.NEXT_TOPIC;

CURRENT-NODE CURRENTNODE.NEXTTOPIC;
end loop;

--The following 'while' and 'if' statements should be flagged for
--improper indentation. Test A2 index 3
--Lack of blank line following the above 'for' loop should be flaggea.
--This lack of blank line prec-eding the 'if' below should also
--should also be flagged. Text A2 indices 8 & 9 respectively.

if TOPICS IN COLUMN TWO then
while COL TWO-NODE 7= null loop
OUTPUTLINE := BLANKLINE; -- blank the line buffer

-- Put first topic in left half of output line 0

I6

USER MANUAL (V. 1.0)

OUTPUTLINE(1..COLONENODE.NAMELENGTH) :=
CQLONENODE.NAME(1..COLONE NODE.NAME LENGTH);

-- Put seconH tcp. in second half of output line

OUTPUT LINE(RIGhT COLUMN2START..RIGHTCOLUMNSTART +
COL T1V .>,DE.NAMELENGTH - 1)

COL TWO NODE.NAME('-..COL TWO NODE.NAMELENGTH);

-- P_: the line in the output buffer. LINECOUNT is incremented automatically

--Tn-s is a block of comments to check the proper indentation of
--the niock of comments. Thi , is dor.e in accordance with Test A2

-- _,dex 6. This should be f' rgged.

HELPINF' ,UrPPOPT.APPEND TC DLStLAY(OUTPUT_ITNE,OUTPUT_BUFFER,LINECOUN");
COLONE .*C£ := N.OL ONENOTE.NEXTTOPIC;

COL TWO NODE :=COL TW', NODE.NEXTTOPIC;
end loop;

end if;

if not EVEN then

-- Put the odd topic in the output buffer

OUTPUT LINE := BLANK LINE;
OUTPUTLINE(1..COL ONENODE.NAMELENGTH)

COL ONENODE.NAME(I..COLONENODE.NAMELENGTH);
L2LP INFOSUPPORT.APPEND TO DISPLAY(OUTPUT_LINE,OUTPUTBUFFER,LINECOUNT);

end if;

-- Now print the output buffer

HELP INFOSUPPr"T.PRINTTEXT(OUTPUTBUFFER,LINECOUNT);
end if;

- -Lack of blank lines separating the major block (exception) shculd
--be flagged. Test A2 index 7.

exception
when others => textio.putline("Print Menu " & CURRENTEXCEPTION.NAME);
raise;

end PRINT TOPICMENU;

After the file has been displayed on the screen, the following prompt will appear:

Would you like to have a hardcopy of any file? (y/n) :

A user input of

N <RETURN>

would return the user to the DASC Main Menu Screen.

7

USER MANUAL (V. 1.0)

A user input of

Y <RETURN>

would result in the additional prompt:

Enter file name with '.ADA' extension =>

A user input of

TESTI ADA <RETURN>

would result in the following DASC Printer Destination Screen:

iPFW Printer job controller

Bldg. ID Princer Desc. Location Access Pickup

Kettler (1) LPAO bulk printer Computer Room open box
(2) LPBO upper/lowercase Computer Room Pascal users box
(3) LETTER word processing Room 204A 50 block max. self-serv
(5) LCAO graphics/text Computer Room Graphics users box
(8) LASER Laser Printer 8 A.M.- 5 P.M. hi quality copy C&DP Off.
(9) LIAO Up/LO case bulk Computer Room open box

(10) KTOPEN upper/lowercase Kettler cluster open self-serv

Neff (6) NEFF graphics/text B74 Graphics users self-serv

Library (7) LIBRARY small-size jobs 1st Floor 50 block max. self-serv

Union (4) UNION small-size jobs Room 125 50 block max. self-serv

Enter the number of the desired destination and a message will appear stating that your job has been
placed into the print queue at that destination.

You will now be returned to the DASC Main Menu Screen.

3.3. List/View Flaw Reports

To list or view the flaw report files (option 3), the user must choose the following from the DASC Main
Menu Screen:

3 <RETURN>

This entry will display the following screen (if ALL test input files have been rum by the StyleChecker):

The following file(s) are flaw reports that the StyleChecker has generated.

Directory USER$DISC: [XNNNXN]

TEST1 .FLW; 1 TEST1A.FLW; 1 TEST1B.FLW; 1
TEST2 .FLW; 1 TEST3A.FLW; 1 TEST4 .FLW; 1
TEST5 .FLW; 1 TEST6 .FLW; 1 TEST7 .FLW; 1

Total of 9 files.
Do you wish to view a file? (y/n) :

8

USER MANUAL (V. 1.0)

A user input of

Y <RETURN>

would result in the additional prompt:

Enter file name with '.FLW' extension =>

The user input of

TEST1.FLW <RETURN>

would result in the following output to the screen.

NOTE: Any screen output longer than one page will require pressing the <RETURN> key. This
enhancement has been added to prevent information from scrolling past the user before he can view that
output.

with CURRENT EXCEPTION;
This package is on the list of packages to be warned against.

PROCEDURE PRINT TOPIC MENU (NODE: in HELP LINK) is
Reserve word PROCEDURE should be in lower case

num TOPICS IN COLUMN ONE: POSITIVE := 1;
Object name numTOPICSINCOLUMNONE should be in upper case

TESTFLAGS: BOOLEAN; --should be flagged for indentation
This line should be indented to column: 5

TESTFLAGS: BOOLEAN; --should be flagged for indentation
This line should be indented to column: 5

if TOTAL NUMBEROFTOPICS /- 0 then if TOTALNUMBEROFTOPICS >= 2 then
There are more than one 3tatements on this line!

EVEN := TRUE; end if; end if; --three statements on this line!
There are more than one statements on this line!

if TOTAL NUMBEROFTOPICS /= 0 then if TOTALNUMBEROFTOPICS >= 2 then
This structure should have following blank lines to set it off.

COL ONE NODE :- NODE.SUBTOPICS;
This line-should be indented to column: 2

CURRENT NODE :- NODE.SUBTOPICS;
This line should be indented to column: 2

for I in 1..NUM TOPICS IN COLUMN ONE loop
This line should be indented to column: 2

if TOPICS IN COLUMN TWO then
This line should be indented to column: 2

OUTPUTLINE := BLANKLINE; -- blank the line buffer
Beginning of this block not indented properly. Line ignored for Indentation!

9

USER MANUAL (V. 1.0)

OUTPUTLINE(l..COLONENODE.NAMELENGTH) :=
Beginning of this block not indented properly. Line ignored for Indentation!

COL TWO NODE.NAMELENGTH - 1) :=
The statement-continuation in this line should be indented!

while COL TWO NODE /= null loop
This structure should have preceding blank lines to set it off.

while COL TWO NODE /= null loop
This structure should have following blank lines to set it off.

while COL TWO NODE /= null loop
This structure is large enough that it should have a loop-name!

if TOPICS IN COLUMN TWO then
This structure should have following blank lines to set it off.

if not EVEN then
This line should be indented to column: 2

if TOTAL NUMBER OF TOPICS /= 0 then if TOTALNUMBEROFTOPICS >= 2 then
This structure should have following blank lines to set it off.

when others =; textio.put-line("Print Menu " & CURRENTEXCEPTION.NAME);
Object name text io should be in upper case

when others => textio.put-line("Print Menu " & CURRENTEXCEPTION.NAME);
Object name putline should be in upper case

PROCEDURE PRINTTOPICMENU (NODE: in HELPLINK) is
This structure should have following blank lines to set it off.

Finish checking started in above statement. Total statements: 66

After the file has been displayed on the screen, the following prompL will appear:

Would you like to have a hardcopy of any file? (y/n): _

A user input of

N <RETURN>

would return the user to the DASC Main Menu Screen.

A user input of

Y <RETURN>

would result in the additional prompt:

Enter file name with '.FLW' extension ==>

A user input of

TEST1.FLW <RETURN>

10

USER MANUAL (V. 1.0)

would result in the DASC Printer Destination Screen (shown on page 8).

Enter the number of the desired destination ani a message will appeair stating that your job has been

placed into the print queue at that destination.

You will now be returned to the DASC Main Menu Screen.

3.4. List/View Style Reports

To list or view the style report files (option 4), the user must choose the following from the DASC Main
Menu Screen:

4 <RETURN>

This entry will display the following screen (if ALL test input files have been run by the StyleChecker):

The following file(s) are style reports that the StyleChecker has generated.

Directory USER$DISC: [XNNNXN]

TEST1.STY;l TEST1A.STY;1 TESTlB.STY;1
TEST2.STY;1 TEST3A.STY;1 TEST4.STY;1
TEST5.STY;1 TEST6.STY;1 TEST7.STY;l

Total of 9 files.
Do you wish to view a file? (y/n):

A user input of

Y <RETURN>

would result in the additional prompt:

Enter file name with '.STY' extension >

The user input of

TEST1.STY <RETURN>

would result in the following output to the screen.

NOTE: Any screen output longer than one page will require pressing the <RETURN> key. This
enhancement has been added to prevent information from scrolling past the user before he can view that
output.

STYLE Report
USER$DISK: [XNNNXNJTEST1.ADA;l

Naming Conventions

* Invalid Case for an Object Identifier 3 Errors

* Invalid Case for a Keyword 1 Error
Name Segment Size (Separated Desired <5 Characters

by Underscores) Actual 4.8 Characters
Average Name Size Desired >5 Characters

Actual 10.2 Characters

11

USER MANUAL (V. 1.0)

Physical Layout

Occurrences of More Than One Statement/Line 2 Errors
* Inconsistent Indentation 14 Errors
* Missing Blank Lines to Set Off a Block 3 Errors

Loops Without Names 1

Information Hiding, Abstraction, Data Use

Percent of Literals In Body Desired < 30.0
Actual 71.4%

Percent of Universal Types Desired < 40.0%
Actual 9.5%

Data Structuring Types NOT Used
Array Types0

Enumeration Types
Record Types

No Attributes are Used
Ada-Specific Features NOT used

AND THEN
OR ELSE
EXITS
XOR
ELSIF
OUT parameters
IN OUT parameters
PRIVATEs

Modularity

Average Number of Parameters Range 0..4 Parameters
Instances of parameters below minimum 0
Instances of parameters above maximum 0

Average Subprogram Size Range 10..200 Statements
Instances of size below minimum 0
Instances of size above maximum 0

Loops with too many exit statements 0 Instances
Control Structure Nesting Maximum 8

Exceeded 0 Instances
Package Nesting Maximum 2

Exceeded 0 Instances -
Subprogram Nesting Maximum 4

Exceeded 0 Instances

Comment Usage

Number of Comments 83 Comments
Average Comment Size Desired >15 Characters

* Actual 53.0 Characters

Transportability

Number of Lines Exceeding Line Length 0
Address Clauses 0
Representation Specifications 0
PRAGMA'S used:

12

USER MANUAL (V. 1.0)

Non-Standard PRAGMA's Used
Packages/Procedures WITHed

CURRENTEXCEPTION

* => Style Flaw => Note: Potential for improvement

Keyword Usage
Used Keyword Allowed Restriction Occurrences Percentage

IF yez 0.0% i0 19.6%
IN yes 0.0% 2 3.9%
IS yes 0.0% 1 2.0%
END yes 0.0% 9 17.6%
FOR yes 0.0% 1 2.0%
NOT yes 0.0% 1 2.0%
ELSE yes 0.0% 1 2.0%
LOOP yes 0.0% 6 11.8%
NULL yes 0.0% 5 9.8%
THEN yes 0.0% 5 9.8%
WHEN yes 0.0% 1 2.0%
WITH yes 0.0% 1 2.0%
BEGIN yes 0.0% 1 2.0%
RAISE yes 0.0% 1 2.0%
WHILE yes 0.0% 2 3.9%
OTHERS yes 0.0% 1 2.0%
SEPARATE yes 0.0% 1 2.0%
EXCEPTION yes 0.0% 1 2.0%
PROCEDURE yes 0.0% 1 2.0%

After the file has been displayed on the screen, the following prompt will appear:

Would you like to have a hardcopy of any file? (y/n):

A user input of

N <RETURN>

would return the user to the DASC Main Menu Screen.

A user input of

Y <RETURN>

would result in the additional prompt:

Enter file name with '.STY' extension =>

A user input of

TEST1.STY <RETURN>

would result in the DASC Printer Destination.Screen (shown on page 8).

Enter the number of the desired destination and a message will appear stating that your job has been
placed into the print queue at that destination.

13

USER MANUAL (V. 1.0)

You will now be returned to the DASC Main Menu Screen.

3.5. Run Help Utility

The DASC on-line help facility contains 53 different topics. However, there are four levels of nesting and
all topics are NOT accessible from EVERY level An alphabetical listing of each nesting level along with
the minimum character string needed to uniquely select that topic appears at the end of this section. For
example, if an "I" or "IN" was entered from the top level, BOTH INSTALLATION AND
INDIVIDUAL_PARAMETERS topics would be selected.But an entry of "INS" would select ONLY topic
INSTALLATION.

NOTE: The help facility utilizes the <RETURN> key to upward exit from a particular nesting level.
Therefore, the user should locate the <NO SCROLL> key and utilize this key to prevent topics with
multiple pages from scrolling past the viewing screen too quickly.

To Run the help utility (option 5), the user must choose the following from the DASC Main Menu Screen:

5 <RETURN>

This entry will display the following screen:

The help utility/Style Checker is now working. Please be patient. Locate the

<no scroll> key and press to prevent information from scrolling past.

<< there is a slight delay at this point while the help utility is being
loaded >>

HELP

This is the Help Facility for the Style Checker. More information on specific
topics may be obtained by entering the leading portion of the name of any of
the topics.

To get the list of topics available at any time, enter a ? at the prompt.

To list the information on all topics below the current topic, enter a * at
the prompt. 0

To exit the Help Facility, enter a <CR> for each level of information.

Additional Information Available:

INSTALLATION STYLEISSUESINGENERAL

OPERATION MAINTENANCE

INDIVIDUAL-PARAMETERS
0

HELP subtopic ?

A user input of

IND <RETURN>

would result in the following screen:

14
0

USER MANUAL (V. 1.0)

INDIVIDUAL PARAMETERS

The parameters defining the limits of the Ada style are defined in the body of
the FILE HANDLING package. In that body the default values are specified as
defaults for the individual parameter variables. There is also a procedure
SETSTYLEPARAMETERS which sets the actual values for the style.

It is expected that any local changes to the style parameters will be done in

the SET STYLEPARAMETERS procedure, so that the original defaults remain
unchanged.

Additional Information Available:

ERRORS TO LIST PERCENTUNIVERSAL
OUTPUT KEYWORD LIST DATA STRUCTURES
SHORTPROGRAM ATTRIBUTECHECK

COMMENT SIZE KEYWORDPARAMETERS
PERCENTLITERALS

HELP INDIVIDUALPARAMETERS subtopic ?

A user input of

E <RETURN>

would result in the following screen:

ERRORSTOLIST

To avoid redundancy repeating instances of detected errors, the 'errors-to-
list' parameter restricts the number of times any one error is listed. This
means, for example, only the first 5 times the user forgot to use loop-names
would be listed. Other occurrences of each individual error would be counted,
and the total instances of the error would be noted on the style summary.

HELP INDIVIDUALPARAMETERS subtopic ? _

A user input of

<RETURN>

would "upward exit" one level of the help facility and result in the following prompt:

HELP subtopic ?

A user input of

<RETURN>

would "upward exit" one level of the help facility and result in the following prompt:

topic ?

15

USER MANUAL (V. 1.0)

A user input of

<RETURN>

would return the user to the DASC Main Menu Screen.

The following is a listing by nesting level of ALL available help topics in DASC. The top levels are left
justified. The letter(s) in parentheses are the minimum character(s) that can be entered to uniquely
select the topic on that level.

INDIVIDUALPARAMETERS (IND)
ADDRESSCLAUSE (AD)
ATTRIBUTECHECK (AT)

AVENAMELEN (AV)
BLANKLINES (B)

CHARACTERSET (CH)
COMMENTSIZE (COM)
CONTROLNESTING (CON)
DATASTRUCTURES (D)

ERRORSTOLIST (E)
INDENTCOMMENTS (INDENTC)

INDENT TYPES (INDENTT)
KEYWORD PARAMETERS (K)

LINE SIZE (LI)

LOOPNAMES (LO)

NUMBEROFLOOPEXITS (N)
OBJECTCASE (OB)
OUTPUT KEYWORD LIST (OU)
PACKAGE NESTING (PA)
PERCENT LITERALS (PERCENTL)

PERCENTUNIVERSAL (PERCENTU)

PRAGMAS (PRA)
PREDEFINED_PRAGMA (PRE)
PROSCRIBEDPACKAGE (PRO)
REPRESENTATIONSPECS (REP) 0
RESERVEDCASE (RES)
SHORTPROGRAM (SHORTP)
SHORT STRUCTURE (SHORTS)

SHORT WORD (SHORTW)
SPELLING REQUIRED (SP)

SUBPROGRAMNESTING (SUBPROGRAMN)
SUBPROGRAMPARAMETERS (SUBPROGRAMP)

SUBPROGRAMSIZE (SUBPROGRAMS)

UNDERSCORES (UNDERSCORES)

UNDERSCORESIZE (UNDERSCORE_)
VOWELFREQUENCY (V)

INSTALLATION (INS)

COMMAND FILE (COMM)
COMPILATION (COMP)
SPECIFICFILENAMES (S)

MAINTENANCE (M)

OPERATION (0)
INPUT FILES (I)
OUTPUTFILES (0)

FLAWS FILE (F)

REPORTFILE (R)

16

USER MANUAL (V. 1.0)

COMMENT USAGE (C)
INFORMATIONHIDING (I)
MODULARITY (M)

NAMINGCONVENTIONS (N)

PHYSICAL LAYOUT (P)
TRANSPORTABILITY (T)

STYLE ISSUES IN GENERAL

3.6. Exit

To exit from the DASC Main Menu Screen (option 6) and return to the system prompt ($), the user must
choose the following.

6 <RETURN>

However, from ANY point in the DASC operation, the user can cause an interrupt in the executing
program. The DEC system will immediately return any user to the system prompt ($) with the following
procedure:

<CTRL> Y <<< press simultaneously >>>

This emergency exit procedure concludes the DASC User Manual. It is hoped that the Style Checker has
been a useful software tool for evaluating program style.

A. Revision History

Version 0.1 04/24/8 Bill Davis

Revision 1.0 04/30/88 Bill Davis
Corrected spelling and punctuation errors.
Standardized representation for <RETURN>.

17

Diskette Order Form

Machine-readable source code (including the test suite) and documentation for the DASC
software system are available from the SEI. To receive a set of the distribution diskettes,
please select the desired format below, and return this form with $10.00 payment to:

Software Engineering Curriculum Project
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Checks may be made payable to Carnegie Mellon University and should accompany this
order form.

Source code format:

[Macintosh diskette (3.5", double sided, 800K byte)

PC/AT-compatible diskette (5.25", double sided, high density, 1.2M byte)

Documentation format:

[Macintosh diskette (includes Microsoft Word, MacWrite, and text-only formats)

[PC/AT-compatible diskette (text-only format)

Send to:

Name

Address

I

UNLIMITED, UNCLASSIFIED
SiCURITY CLASSIFICArioN OF THIS PAGE

REPORT DOCUMENTATION PAGE
le REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MAARK11NGS

UNCLASSIFIED NONE
2.L SECURITY CLASSIFICATION AurH.ORITY 3. OISTRIOUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2b. DECL.ASSIPiCATION/CDOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED

N/A
A PEAIFORMING ORGANIZATION REPORT NUMBEAIS) S. MONITORING ORGANIZATION REPORT NuMBSERIS)

CMU/SEI-89-EM- I__________________________
6.& NAME OF PERFORMING ORGANIZATION b.L OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION

(it opplkidl)
SOFTWARE ENGINEERING INST. SEI SEI JOINT PROGRAM OFFICE

6<- ADDRIESS (City, State and~ ZIP Coda) 7b. ADDRESS (City. State Arid ZIP Code)

0 CARNEGIE MELLON UNIVERSITY ESD/AVS
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE

HAN'9ClM_ MA Q1711
6.NAME OF FUNOING/7SPONSORING 8b. OFFICE SYM648l. 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

SET JOINT PROGRAM OFFICE ED V F1962890CO003

* S.ADDRESS (City. Stale and ZIP Code) 10. SOURCE OF FUNDING NOS. ______________

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
PITTSBURGH, PA 15213 ELEMENT NO. No. NO. NO.

11. TITLE (inc lude Security CkIt~afleationA 19NANI I

Software Maintenance Exercises for a Softwa Enierd Prjc Curse______
* 12. PERSONAL AUITHOP(SI

__Charles B. Engle, Gary Ford, Tim Korn
134L TYPE OF REPORT 13b. TIME COVEREO j14. DATE OF REPORT (Y.. M*. Dgyj IBPAGE COUNtT

FTNAT. IFROM TO ___ ___vii~rmvr 1119 I
16. UPPLEMENTARY NOTATION

7.COSATI CODES I&. SUBJECT TERMS tCoRni n rearl fFIfilecssey M ea mnds"Y 67 black 'lumber)

PIELO GROUP SUB. GR.
software maintenance
education

19. ABSTRACT (Coninue an PW&,ErlE ifru "airW ad Identh by block numbers

0 Software maintenance is an important task in the software industry and thus an important
part of the education of a software engineer. It has been neglected in education, partly
because of the difficulty of preparing a software system upon which maintenance can be
performed. This report porvides an operational software system of 10,000 lines of Ada
and several exercises based on that system. Concepts such as configuration management,

* regression testing, code reviews, and stepwise abstraction can be taught with these
exercises.

20. OISTRISUTIONIAVAILABILITY Of ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIPIEO/UNLIMITEO g SAME AS RPT. 0 OTIC USERS (3 UNCLASSIFIED, UNLIMITED DISTRIBUTION
22&. NAME OF RESPONSIBLE INOIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

* OHI S. HERMAN, Capt, USAF icuiAeoe
________________________________ 1 412 268-7630 ISEI JPO

00 FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. -UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATIONt OF THIS PAGE

The Software Engineering institute (SEI) is a federally funded research and development ,inller, operated by Carnegie
Mellon University under contract wrth the United States Deparlment of Defense.

* The SEI Software Engineering Curriculum Project is developing a wide range of materials to support software engineering
education. A cuirrculum module (CM) identifies and outlines the content of a specific topic area, a id is intended to be
used by an instructor in designing a course. A support materials package (SM) conta..ls materials related to a module
that may be helpful in teaching a course. An #ducational materials package (EM) contains other mat arials not necessarily
related to a curriculum module. Other publications indiude software engineering curriculum recomirrendations and course
designs.

* SEI educational materials are being made available to educators throughout the academic. indlustrial, and government
communirties. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI. by Carnegie Mellon University, or by the United States governmenL

Permission to make copies or derivative works of SEI curriculum modules, support materials. and educational materials is
granted, without fee, provided that the copies and derivative works are not made or distributed for direct commercial
advantage, aid that all copies and derivative works cite the original document by name, author's name, and document

* number and give notice that the copying is by permission of Carnegie Melk~n University.

Comments on SEI educational materials and requests for additional information should be addressed to the Software
Engineering Curriculum Project, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
15213. Electronic mail can be sent to educatioo@sei.cmu.edu on the Internet.

Curriculum Modules (Support Materis available) 9 ducational Materials

CM-I (superseded by CM- 191 EM-i Software Maintenance Exercises for a Software
CM-2 Introduction to Software Design Enginweing Protect Course
CM-3 The Software Technical Review Process* EM-2 APSE Interactive Monitr: An Artifact for Software

CM4 oftareConigurtio MaageenrEngineering Edujcation
CM-5 Snotaeionfirtion EM-3 Reading Computer Programs: Instructos Guide encl

CM-B Software Safety Eecs

CM-7 Assurance of Software Ouslity
CM-S Formal Specification of Software.
CM-0 Unit Testin and Analysis
CM-lO ModeUsof Software Eve:,"n: Life Cycle and Process
CM- I Software Specilleauons: A Frarnewo*

* CM-12 Software Metrws
CM- 13 Introduction to Softwarell Verification and Validation
CM-14 Intelectual Property Protection for Software
CM-IS Software Development and Licensing Contracts
CM-i6 Software Developmrrent Using VDM
CM-17 User Interface Development*
CM-IS (superseded by CM-231
CM-iB Software, Pe~luiements
CM-20 Formal Verication of Programs
CM-21 Software Project Management
CM-22 Software Design Methods for Real-Tine Systems'
CM-23 Technica Writing for Softwaire Engineers
CM-24 Concepts of Concurrent Programming

* CM25 Language and System Support for Concurrent
Programming*

CM-26 Understanding Program Dependencies

